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Abstract. The goal of the Conversational Interfaces project at CSLI is to develop a general purpose 
architecture which supports multi-modal dialogues with complex devices, services, and applications.  We 
are developing generic dialogue management software which supports collaborative activities between a 
human and devices. Our systems use a common software base consisting of the Open Agent Architecture, 
Nuance speech recogniser, Gemini (SRI's parser and generator), Festival speech synthesis, and CSLI's 
“Architecture for Conversational Intelligence” (ACI).  This paper focuses on one application of this 
architecture - an intelligent tutoring system for shipboard damage control. We discuss the benefits of 
adopting this architecture for intelligent tutoring. 

1. INTRODUCTION 

Multi-modal, activity-oriented dialogues with devices present a challenge for 
dialogue system developers. Conversational interaction in these contexts is mixed-
initiative and open-ended. Consider dialogue with an intelligent tutoring system. 
Dialogue can be unpredictable in tutorial interactions. The student may need to ask 
the tutor a question; e.g., to request information or request rephrasing.  In (1), from 
Shah et al. (2002, p. 32) a student is requesting information in the form of a yes-no 
question about the topic in focus. The tutorial domain is physiology.   
 

(1) Student: Did you count my prediction for sv? 
                 Tutor:    Yes, but you haven’t predicted tpr. 

                          
In (2), a student is requesting that the tutor rephrase their previous utterance (Shah et 
al., 2002, p. 34): 
 
       (2)  Tutor:     How are the falls in TPR and in CC connected to decrease in     
                                      MAP? 
                 Student:  I don’t think I understand the question. 
        Tutor:     What are the determinants of MAP?   
 
Further, the tutor must have a way of reacting to various types of user input; e.g., by 
adjusting the tutorial agenda when the student asks for clarification about past topics 
of discussion or when the student asks the tutor to alter the initial overall tutoring 
plan (e.g., “Can we move on to the next topic?”). 
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     In this paper we discuss a new general purpose architecture for intelligent 
dialogue systems which addresses these issues: the Architecture for Conversational 
Intelligence (ACI) developed at CSLI. The ACI has previously been used in a 
dialogue system for multi-modal conversations with a robot helicopter (the WITAS 
system; Lemon et al., 2002a, 2002b). We focus here on a recent deployment of this 
architecture in the domain of intelligent tutoring. We will first discuss the intelligent 
tutoring system we are developing for shipboard damage control. Next, we discuss 
the ACI for dialogue systems and what benefits it has for intelligent tutoring. 

 

2. AN INTELLIGENT TUTORING SYSTEM FOR DAMAGE CONTROL 
 
Shipboard damage control refers to the task of containing the effects of fire, 
explosions, and other critical events that can occur aboard Naval vessels. The high-
stakes, high-stress nature of this task, together with limited opportunities for real-life 
training, make damage control an ideal target for AI-enabled educational 
technologies like intelligent tutoring systems. 
     We are developing an intelligent tutoring system for automated critiquing of 
student performance on a damage control simulator (Clark et al., 2001). The 
simulator is DC-Train (Bulitko and Wilkins, 1999), an immersive, multimedia 
training environment for damage control. DC-Train's training scenarios simulate a 
mixture of physical phenomena (e.g., fire) and personnel issues (e.g., casualties).  
  Recent research has shown that elaborate tutorial interaction during problem 
solving may be distracting or cause cognitive overload (Katz et al., 2000).  This 
suggests that less may be best in certain learning situations (Sweller et al., 1998, 
cited in Katz et al., 2000): the cognitive load of simply solving a problem may be 
high enough that the tutorial interaction should take place after the student has 
solved the problem (rather than during the problem solving session); i.e., reflective 
tutoring. Further, work by Katz et al. (2000, see also Katz and Allbritton, 2002) has 
shown that reflective tutoring has a positive effect on learning and enhances the 
acquisition of strategic and conceptual knowledge. Additionally, we take as our 
starting point that a tutoring system should model tactics that promote constructive 
and effortful responses from students (Chi et al., 2001). For these reasons, the 
intelligent tutoring system we have developed for damage control is reflective (the 
tutor generates plans for post-practice reflection) and Socratic (the tutor asks 
questions rather than giving explanations).  
 Figure 1 is a screenshot of the graphical user interface for our reflective 
intelligent tutoring system for damage control. On the right side of the screen is a 
global view of the ship. Ship compartments are highlighted in coordination with the 
speech output of the system. The bottom left corner hosts the transcript of the 
student’s conversation with the tutor. The top left corner is the interactive ship 
display. This part of the GUI is a common workspace for the student and the tutor. 
The conversational participants can manipulate the ship display; e.g., both the 
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student and tutor can highlight compartments.  Thus, the tutor is truly multimodal: it 
coordinates linguistic input and output (speech) with non-linguistic input and output 
(the user can indicate a compartment with a mouse click or the system can highlight 
a compartment). 
 

 
 

Figure 1. Screen shot of GUI for reflective intelligent tutorial dialogue system 
      
 (3) provides part of an actual session with our intelligent tutoring system. The 
tutor runs on a laptop using Windows 2000.  
  
 (3)  Tutor:     Hello, we are about to review your session from yesterday. 
                                All right, are you ready? 
                   
   Student: Yes. 
                  
   Tutor:     In this session there were 5 primary crises and 1 secondary                        
                                crisis. 5 of the 6 crises were resolved. Most of your actions were      
                                correct, however you made several mistakes.  
               
        OK, let’s discuss a  few of those crises. The first crisis was a  
             fire here in Crew Living space No. 1. [centers on this   
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        Compartment and highlights it] This fire was not contained early 
        enough. As a result, the fire spread to the adjacent Combat   
        system equipment room No. 2. [highlights 2nd  compartment]  
               
                                 OK, let’s review how to handle this crisis.  [removes    
              highlight from 2nd compartment] What’s the first thing you  
         should do when the fire alarm sounds? 
                   
   Student:  Send repair two to investigate. 
                   
   Tutor:     Yes, that’s right. However, you failed to do this during the  
                                 session. This is a mistake you made more than once.   
                                 Remember, alarms need to be verified first.  
               
          OK, suppose that  there is a fire. What’s the next step? 
                  
    Student:  Set fire and smoke boundaries. 
                  
    Tutor:     Yes. That’s what you did during the session.  
               
                                 OK, what else  needs to be done? 
    
   Student:  The repair team should fight the fire. 
    
   Tutor:      No. You missed a step. Remember, the crisis might interfere    

    with other ship systems.  
         
    Let’s try again. What else needs to be done? 
 

 Student:  I don’t know. 
 
 Tutor:     Well. You should order repair five to mechanically and  

         electrically isolate the compartment. But you didn’t do this   
         during the session. This is a mistake you made more than once.  
         Remember, mechanical and electrical isolation protects crucial  
         ship systems.  
 
         All right, suppose isolation has begun and boundaries have been 
         set. What’s the next step? 
 
   Student:  Fight the fire. 
 
   Tutor:     Yes, exactly. That’s what you did. 
                  
   … 
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Tutor:     The next crisis was a flood here in Engine room No. 2.      
      [highlights compartment] Let’s review how to handle this crisis.  
 
     What’s the first thing you should do when the flood alarm   
     sounds? 
 
Student:  Send repair two to investigate. 
 
Tutor:     Almost. Let’s review the jurisdiction of repair lockers. The flood    
               alarm was here in Engine room No. 2 [highlights compartment].  
      Please click on the location of the nearest repair locker in the  
      left display above. Let me know when you’re ready to continue. 
 
Student:  [clicks on correct compartment] Please continue. 
 
Tutor:     Yes, that’s right. Which repair locker is that? 
 
Student:  Repair five. 
 
Tutor:     Yes, that’s right. You should order repair five to investigate the  

        compartment. But you sent the wrong repair team during   
           the session. 

  
 The dialogue in (3) matches the 5-step dialogue frame that Graesser and Person 
(1994) observed in naturalistic tutoring. 
 
 Step 1: Tutor asks question (or presents problem) 
 Step 2: Learner answers question (or begins to solve problem) 
 Step 3: Tutor gives short immediate feedback on the quality of the answer  
 Step 4: The tutor and learner collaboratively improve the quality of the answer 
 Step 5: The tutor assesses the learner’s understanding of the answer 
 
 Figure 2 is the overall architecture of our system (ASR = Automated Speech 
Recognition, TTS = Text-to-Speech).  
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Figure 2. Reflective Tutoring Architecture 
 
 
 In addition to being a Socratic tutor, our tutor shares several features with other 
intelligent tutoring systems; e.g., CIRCSIM-Tutor (Zhou et al., 1999) and 
Atlas/Andes (Freedman, 2000).  
 

• A knowledge base (problem, solution, and domain knowledge in Figure 2):  
DC-Train currently encodes all knowledge relevant to supporting reflective 
intelligent tutoring into a structure called a Causal Story Graph. These 
expert summaries encode causal relationships between events on the ship as 
well as the proper and improper responses to shipboard crises. 

• Tutoring tactics (see Figure 2): To respond to student answers to tutor 
questions, our tutor draws on a library of tutoring tactics. These tactics are 
very similar to the plan operators utilized in the Atlas/Andes system. The 
different components of these tactics are the object (what’s being taught), 
the preconditions (when a particular tactic can be applied), and the recipe 
(what is the method to be used to teach the object).  Preconditions on 
tutoring tactics involve combinations of a classification of the student’s 
response (e.g., a fully correct or incorrect answer) and actions in their 
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session with the simulator DC-Train (e.g., an error of omission or correct 
action). 

• An interpretation-generation component (ASR, TTS, Grammar, Parser-
Generator, and Dialogue Manager in Figure 2): In our system, the student's 
speech is recognized and parsed into  logical forms (LFs). The architecture 
also allows the tutor’s speech to be generated from LF inputs, although we 
currently use template generation.  A dialogue manager  inspects the 
current dialogue information state to determine how  best to incorporate 
each new utterance into the dialogue (Lemon et al., 2002a and 2002b). 

 
     An important difference is that CIRCSIM-Tutor and Atlas/Andes are entirely 
text-based, whereas ours is a spoken dialogue system (ASR and TTS in Figure 2).  
Our speech interface offers greater naturalness than keyboard-based input, and is 
also better suited to multimodal interactions than keyboard-based input (namely, one 
can point and click while talking but not while typing). In this respect, our tutor is 
similar to COVE (Roberts, 2000), a training simulator for conning Navy ships that 
uses speech to interact with the student.  But whereas COVE uses short 
conversational exchanges to coach the student during the simulation, our tutor 
engages in extended tutorial dialogues after the simulation has ended. An additional 
significant difference between our system and a number of other intelligent tutoring 
systems is our use of ‘deep’ processing techniques. While other systems utilize 
‘shallow’ statistical approaches like Latent Semantic Analysis (e.g. AutoTutor; 
Wiemer-Hastings et al., 1999), our system utilizes Gemini, a parser/generator based 
on a symbolic grammar. This approach enables us to provide precise and reliable 
meaning representations. 
     As discussed in the introduction, conversation with intelligent tutors places the 
following requirements on dialogue management (see Lemon et al., 2002b and 
Clark, 1996): 
 

• Mixed-initiative: in general, both the student and the tutor should be able to 
introduce topics 

• Open-ended: there are not rigid pre-determined goals for the dialogue 
 
     In the next four sections, we discuss in more detail the implementation of our 
system and how the general purpose architecture for intelligent tutoring systems we 
have developed meets these two demands. 

 

3. AN ARCHITECTURE FOR MULTI-MODAL DIALOGUE SYSTEMS 

To facilitate the implementation of multi-modal, mixed-initiative interactions we use 
the Open Agent Architecture (OAA) (Martin et al., 1999). OAA is a framework for 
coordinating multiple asynchronous communicating processes.  The core of OAA is 
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a ‘facilitator’ which manages message passing between a number of encapsulated 
software agents that specialize in certain tasks (e.g., speech recognition). 
     Our system uses OAA to coordinate the following agents: 
 

• The Gemini NLP system (Dowding et al., 1993): Gemini uses a single 
unification grammar both for parsing strings of words into logical forms 
(LFs) and for generating sentences from LF inputs (although, as mentioned 
above, we do not use this feature currently). This agent enables us to give 
precise and reliable meaning representations which allow us to identify 
dialogue moves (e.g., wh-query) given a linguistic input; e.g., the question 
“What happened?'' has the (simplified) LF: wh-
query(wh([tense(past),action(happen)])). 

• The Nuance speech recognition server: The Nuance server converts spoken 
utterances to strings of words. It relies on a language model, which is 
compiled directly from the Gemini grammar, ensuring that every 
recognized utterance is assigned a LF. 

•  The Festival text-to-speech system: Festival is a speech synthesizer for 
system speech output. 

• The Architecture for Conversational Intelligence (ACI) coordinates 
inputs from the student, interprets the student's dialogue  moves, updates 
the dialogue context, and delivers speech and graphical outputs to the 
student (i.e., generation). This agent is discussed in Section 4. 

 
The first three agents are ‘off-the-shelf’ dialogue system components (apart from the 
Gemini grammar, which must be modified for each application).  The ACI agent 
was written in Java for dialogue management applications in general and is 
described in more detail in Sections 4 and 5. This 
OAA/Gemini/Nuance/Festival/ACI architecture has also been deployed successfully 
in other dialogue systems; e.g., a collaborative human-robot interface (Lemon et al., 
2002a, 2002b). 
 
 

4. ACTIVITY MODELS 
 
An important part of dialogue context to be modelled is the tutor’s planned activities 
(what topics are going to be discussed and how), current activities (what topic is 
being discussed) and their execution status (pending, cancelled, etc.).  Declarative 
descriptions of the goal decompositions of activities (COLLAGEN’s “recipes”, 
Atlas/Andes’ “plan operators”, our “Activity Models”) are a vital layer of 
representation between the dialogue manager and the tutor.   
 Intelligent tutoring systems should be able to plan sequences of atomic actions, 
based on higher-level input; e.g., a problem, the student’s solution to that problem, 
and domain knowledge. On the basis of this input, the tutor carries out planning 
(e.g., an initial overall tutoring plan) and then informs the dialogue manager of the 
sequences of activities it wishes to perform. The model contains traditional planning 
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constraints such as preconditions of actions (as with the tutoring tactics mentioned in 
Section 2 and discussed in detail below).   Dialogue between the tutor and student 
can be used to revise the overall tutorial plan and to update the student model.  We 
will briefly discuss both of these possible revisions. 
 The tutor uses information in an annotated record of the student’s performance to 
construct an initial overall tutoring plan; i.e., what problems (e.g., shipboard crises 
like fires) are going to be discussed. Our tutor currently makes a list of exemplar 
crises that occurred in the student’s session with DC-Train. If more than one crisis of 
a given type occurred, the tutor picks the one with the most errors. The motivation 
for this particular algorithm is that the student’s knowledge and misconceptions will 
be reflected in the errors they make and that exemplar crises will make for the most 
interesting dialogues and the most opportunities for learning. This initial overall 
tutoring plan can be dynamically revised during the tutorial dialogue; e.g., the 
student can ask to skip discussion of a particular topic by saying (some variant of) 
“Can we please move on?” 
 A student model represents the tutor’s estimate of what the student knows (or 
doesn’t) know and what skills the student has (or hasn’t) mastered. The evidence 
that is used in constructing a student model is the student’s solution to problems, of 
course, but also the student’s interaction with the tutor. For example, the student’s 
answers to the tutor’s questions, the student’s explanations, and the student’s 
questions to the tutor can all be used to update the student model over time.  
 We are developing one representation and reasoning scheme to cover the 
spectrum of cases from devices with no planning capabilities to some with more 
impressive on-board AI, like intelligent tutoring systems. In the tutor we have 
developed, both the dialogue manager and the tutor have access to a “Task Tree”: a 
shared representation of planned activities and their execution status. The tree is 
built top-down by processing a problem, a student’s solution to that problem, and the 
relevant domain knowledge. The nodes of the tree are expanded by the dialogue 
manager (via the Activity Models specified for the tutor) until only leaves with 
atomic actions are left for the tutor to execute in sequence.  The tutor and the  
dialogue manager share responsibility for constructing different aspects of the Task 
Tree; e.g., the dialogue manager marks transitions between topics (with “OK”, “All 
right”) while the tutor constructs the overall initial tutoring plan.   
  Tutoring tactics (e.g., hinting) are one type of Activity Model in our tutor. To 
initiate a tutoring tactic, the student invokes the tutor by responding to a question. 
The tutor searches the library of tutoring tactics to find all of the tactics whose 
preconditions are satisfied in the current context. Like the plan operators in other 
systems (e.g., Atlas/Andes; Freedman, 2000), each tutorial tactic has a multi-step 
recipe (Wilkins, 1998) composed of a sequence of actions.  Actions in a recipe can 
be primitive actions like providing feedback or complex actions like an embedded 
tutoring tactic. 
 An example tutoring tactic is given in Figure 3.  For legibility, the key elements 
are presented in English rather than than Java. The object (or goal) of the tutoring 
tactic is to teach the student about an action they failed to perform (an error of 
omission). This tactic is used when the student answers the tutor’s question 
incorrectly and the student’s action in response to a damage event included an error 
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of omission. These are the preconditions on the application of this tutoring tactic. 
For example, in the dialogue in (3) the student said “The repair team should fight the 
fire” (an incorrect answer and the student forgot to isolate the compartment in their 
session with DC-Train). The method that the tutor uses to teach the student about 
their error of omission is given by the recipe – a series of sequential system actions.  
 

def_strategy discuss_error_of_omission_answer_incorrect 
: goal  (did_discuss_error_of_omission_answer_incorrect) 
: preconditions 

(i) the student's answer is incorrect 
(ii) the student's actions in response to the damage event included an 
error of omission 

: recipe 
(i) provide negative feedback to the student 
(ii) give the student a hint 
(iii) ask a follow-up question 
(iv) classify the student's response 
(v) provide feedback to the student 
(vi) tell the student the rule 
(vii) tell the student that the topic is changing 
 

Figure 3. Activity Model for Hinting 
 
 
The tutor utilizes information in a Causal Story Graph (CSG, an annotated 

description of the student’s performance in their session with DC-Train) to decide 
which tutorial tactic is appropriate with respect to a student's response to a particular 
question. For example, in Figure 3, the tutor uses, in the preconditions on the 
application of the tutoring tactic, the information in the CSG which classifies the 
relevant action as an error of omission, in addition to the classification of the 
student's response as an incorrect answer. The preconditions on other tutoring tactics 
will involve different combinations of action and response classification.  Hence, it 
is the combination of the classification of a student's response (as correct, incorrect, 
etc.) and action in a DC-Train session (as an error of omission, error of commission, 
etc.) which determine which tutoring tactic the tutor uses to teach the student. 

The tutor then adds a node to the Task Tree describing the tutoring tactic. The 
tutoring tactic specifies what atomic actions should be invoked (e.g., feedback), and 
under what conditions they should be invoked. For example, in Figure 3, the tutoring 
tactic states that that tutor should, 

 
• provide negative feedback to the student 
• give the student a hint 
• ask a follow-up question 
• classify the student's response 
• provide feedback to the student 
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• tell the student the rule 
• tell the student that the topic is changing 

 
 Nodes on the Task Tree can be active, completed, or cancelled. Any change in 
the state of a node (e.g., because of a question from the student) is added to the 
System Agenda (the stack of issues to be raised by the system – see below). For 
example, in (4), the student asks the tutor a “Why”-question following the tutor’s 
explanation.  The tutor responds to the student’s question by adding the student’s 
question to the Task Tree and marking it as active. The tutor then asks the student if 
they would like the tutor to display the relevant section of doctrine. After the student 
has responded, the node corresponding to the student’s question is marked 
completed. 
 
 (4) Tutor:    You should request permission from the EOOW to start a  
       firepump. But you didn’t do this during the session. 
       Remember, you need the EOOW’s permission before   
       starting  a firepump. 
  Student: Why? 
  Tutor:     Well. This is specified in damage control doctrine. Would  
        you like me to display the relevant section of doctrine? 
  Student:  Yes. 
  Tutor:     OK. [doctrine is displayed] Let me know when you’re ready 
        to continue. 
 
 

5.  DIALOGUE MANAGEMENT ARCHITECTURE 
 

Dialogue Management with the ACI makes use of several recent ideas in dialogue 
modeling, described in detail in Lemon et al. (2002a, 2002b). Much of what follows 
in this section is an adaptation of the discussion in Lemon et al. (2002b). The 
Dialogue Manager creates and updates an Information State, corresponding to a 
notion of dialogue context. Dialogue moves (e.g., wh-query, wh-answer) update 
information states. A student's dialogue move might send a response to the tutor, 
elicit an assertion by the tutor, or prompt a follow-up question. The tutor itself 
generates dialogue moves that are treated just like the student's conversational 
contributions. 
    The ACI includes the following dynamically updated components (see Lemon et 
al., 2002a, 2002b for full details): 
 

• The Dialogue Move Tree: a structured history of dialogue moves and 
‘threads’, plus a list of ‘active nodes’ 

• The Task Tree: a temporal and hierarchical structure of activities initiated 
by the system or the user, plus their execution status 

• The  System Agenda: the issues to be raised by the system 



12 CLARK ET AL.  

• The Salience List: the objects referenced in the dialogue thus far, ordered 
by recency 

• The Pending List: the system’s questions asked but not yet answered by 
the student 

• The Modality Buffer: stores gestures for later resolution 
  
 Figure 4 shows an (edited) example of an Information State logged by our 
system, displaying the interpretation of  “I should send repair two to fight the fire”.  
 
 

 
 
 

Figure 4. Information State (Dialogue Move Tree)  
 
 

     Dialogue management involves a set of domain-independent dialogue move types 
(e.g., wh-query, wh-answer, etc.; Ginzburg et al., 2001). A dialogue with the system 
generates a particular Dialogue Move Tree (DMT). The DMT provides a 
representation of the current state of the conversation in terms of a structured history 
of dialogue moves. Each node is an instance of a dialogue move type and is linked to 
a node on the Task Tree, where appropriate. Further, the DMT determines whether 
or not user input can be interpreted in the current dialogue context, and how to 
interpret it.   
 Incoming logical forms (LFs) are tagged with a dialogue move type. For 
example, the LF wh-query(wh([tense(past),action(happen)])) corresponds to the 
utterance “What happened”, which has the dialogue move type wh-query.  How are 
dialogue moves related to the current context? We use the DMT to answer this 
question:  
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• A DMT is a history or “message board” of dialogue contributions, 

organized by “thread”, based on activities. In our tutor, threads 
correspond to topics like individual ship crises. 

• A DMT classifies which incoming utterances can be interpreted in the 
current dialogue context, and which cannot be. It thus delimits a space 
of possible Information State update functions. 

• A DMT has an Active Node List (ANL) which controls the order in 
which this function space is searched. 

• A DMT classifies how incoming utterances are to be interpreted in the 
current dialogue context.  

 
 A particular Dialogue Move Tree can be understood as a function space of 
dialogue Information State update functions of the form  
 
 f : Node × Conversational Move  Information State Update 
 
where Node is an  active node on the dialogue move tree, a Conversational Move is 
a structure (Input Logical Form, Activity Tag, Agent) and an Information State is a 
function g : IS  IS which changes the current IS. The details of the update function 
are determined by the node type (e.g., wh-query) and the incoming dialogue move 
type (e.g., wh-answer) and its content, as well as the value of the Activity Tag.  
 This technique of modelling dialogue context is a variant of “conversational 
games” (or “dialogue games”; Carlson, 1983) and, in the context of task-oriented 
dialogues like tutoring, “discourse segments” (Grosz and Sidner, 1986).  Both of 
these accounts of dialogue context rely on the observation that answers generally 
follow questions, commands are generally acknowledged, so that dialogues can be 
partially described in terms of “adjacency pairs” of such dialogue moves. The ACI’s 
notion of  Attachment embodies this idea. 
 The two main steps of the algorithm controlling dialogue management are 
Attachment and Process Node: 
 

• Attachment: processes incoming input Conversational Move c with respect 
to the current DMT and Active Node List, and “attach” a new node N 
interpreting c to the tree if possible (i.e., find the most active node on the 
DMT of which the new node can be a daughter, and add the new node at 
that location).  

 
• Process node: process the new node N, if it exists, with respect to the 

current information state. Perform an Information State update using the 
dialogue move type and content of N.  

 
 The effect of an update function depends on the input conversational move c (in 
particular, the dialogue move type and the contents of the logical form) and the node 
of the DMT that it attaches to. The possible attachments can be thought of as 
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adjacency pairs (see Levinson 1983), paired speech acts which organize the 
dialogue locally. Each dialogue move class contains information about which node 
types it can attach.  
 Some examples of different attachments available in the current version of our 
tutor can be seen in Figure 5 (where activity tags are not specified, attachment does 
not depend on the sharing of an activity tag, as with the node type not-recognized). 
For example, the fourth entry in the table states that a wh-query generated by the 
tutor, with the activity tag t, is able to attach any wh-answer by the student with that 
same activity tag. Similarly, the row for explanation states that any explanation by 
the tutor, with the activity tag t, can attach a why-query by the student.  
 
 

Node Type Activity Tag Speaker Attaches 
noun-query t Tutor wh-answer(t, 

user) 
why-query t Student report(t, 

system) 
yn-query t Tutor yn-answer(t, 

user) 
wh-query t Tutor wh-answer(t, 

user) 
yn-answer t Student report(t, 

system) 
wh-answer t Student report(t, 

system) 
explanation t Tutor why(t, user) 
not-recognized  Student pardon(system) 

 
Figure 5. Attachment in the Dialogue Move Classes 

 
 
 The possible attachments summarized in Figure 5 constrain the ways in which 
DMTs can grow, and thus classify the dialogue structures that can be captured in the 
current version of our tutor. As new dialogue move types are added to the tutor, this 
table will be extended to cover a greater range of dialogue structures. Note that the 
tutor’s dialogue moves appear on the DMT, just as the student’s do. 
 Recall the requirements placed on automated tutors discussed in Section 2. The 
DMT structure is able to interpret both the student and tutor input as dialogue moves 
at any time, thus allowing for mixed-initiative.  Further, the DMT can handle 
dialogues with no clear endpoint (open-ended). In the next section, we discuss 
further benefits of the ACI for intelligent tutoring systems, both in the domain of 
shipboard damage control and in general. 
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6. BENEFITS OF ACI FOR INTELLIGENT TUTORING SYSTEMS 

 
There are several benefits to CSLI’s dialogue management architecture (Lemon et 
al., 2002b): 
 

•  The dialogue management architecture is reusable across domains.  As 
mentioned, the same architecture has been successfully implemented in an 
unmanned helicopter interface (Lemon et al., 2002a, 2002b). The Activity 
Models - e.g., the properties of the relevant activities- and (some aspects of) the 
grammar will have to be changed across domains. 
 

•  The Dialogue Move Tree/Task Tree distinction allows one to capture the notion 
that dialogue works in service of the activity the participants are engaged in. 
That is, the structure of the dialogue, as reflected in the Dialogue Move Tree, is 
a by-product of other aspects of the dialogue management architecture; e.g., the 
Activity Models. The Dialogue Move Tree/Task Tree distinction is supported 
by recent theories of dialogue; e.g., Clark's (1996) joint activity theory of 
dialogue.  
 

• The dialogue move types are domain-general, and thus reusable in other 
domains. 
 

•  The architecture supports multi-modality with the Modality Buffer. For 
example, we are able to coordinate linguistic input and output (e.g., speech) 
with non-linguistic input and output (e.g., the student can indicate a region of 
the ship display with a mouse click or the tutor can highlight a compartment). 

 
 

7. CONCLUSION 
 

We began by identifying two properties of tutorial interaction that a dialogue system 
must capture: mixed-initiative and open-endedness. We then explained the domain-
general modelling techniques we used to build an intelligent tutoring system for 
damage control. This tutor is novel in that it is the first spoken intelligent tutoring 
system. Our speech interface offers greater naturalness than text-based intelligent 
tutors and is better suited to multi-modal interactions. We discussed CSLI’s dialogue 
management architecture and the algorithms we used to develop a tutor that is multi-
modal, mixed-initiative, and allows for open-ended dialogues. 
 
 
7.1. Future Work 
 
We are currently expanding the tutoring module to support a wider range of tutoring 
tactics and strategies. Some of these tactics and strategies are specific to damage 
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control. Other tactics and strategies are domain-general. We plan to evaluate how 
well CSLI’s dialogue management architecture (the Dialogue Move Tree and the 
Activity Models we have developed for our tutor) handles tutorial dialogues in other 
domains; e.g., basic electricity and electronics or algebra.  

 
 

7.2. Evaluation 
 
As part of the research described here, we have done only informal evaluation of the 
system so far. Three former damage control assistants, with no previous experience 
using our tutor, completed a session with our tutor. Each subject was able to 
complete a dialogue with our system, and data has been collected, including speech 
recognition error rates. All three dialogues were recorded, and the Information States 
logged. We are planning two larger evaluation efforts in the near future: one at 
Stanford University, the other at the Naval Postgraduate School in Monterey, CA. 
We are also planning several psycholinguistic experiments utilizing our tutor. 
Broadly, we would like to find out if students learn better with a spoken 
environment. If so, is that directly because of the naturalness of the modality, or 
because speech encourages longer utterances and more student initiative?   
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