
 1
Jan van Kuppevelt, Laila Dybkjaer and Niels Ole Bernsen (eds.), Natural, Intelligent and
Effective Interaction in Multimodal Dialogue Systems, ?—?.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

BRADY CLARK, OLIVER LEMON, ALEXANDER
GRUENSTEIN, ELIZABETH OWEN BRATT, JOHN FRY,

STANLEY PETERS, HEATHER PON-BARRY, KARL SCHULTZ,
ZACK THOMSEN-GRAY AND PUCKTADA TREERATPITUK

A GENERAL PURPOSE ARCHITECTURE FOR
INTELLIGENT TUTORING SYSTEMS

Abstract. The goal of the Conversational Interfaces project at CSLI is to develop a general purpose
architecture which supports multi-modal dialogues with complex devices, services, and applications. We
are developing generic dialogue management software which supports collaborative activities between a
human and devices. Our systems use a common software base consisting of the Open Agent Architecture,
Nuance speech recogniser, Gemini (SRI's parser and generator), Festival speech synthesis, and CSLI's
“Architecture for Conversational Intelligence” (ACI). This paper focuses on one application of this
architecture - an intelligent tutoring system for shipboard damage control. We discuss the benefits of
adopting this architecture for intelligent tutoring.

1. INTRODUCTION

Multi-modal, activity-oriented dialogues with devices present a challenge for
dialogue system developers. Conversational interaction in these contexts is mixed-
initiative and open-ended. Consider dialogue with an intelligent tutoring system.
Dialogue can be unpredictable in tutorial interactions. The student may need to ask
the tutor a question; e.g., to request information or request rephrasing. In (1), from
Shah et al. (2002, p. 32) a student is requesting information in the form of a yes-no
question about the topic in focus. The tutorial domain is physiology.

(1) Student: Did you count my prediction for sv?
 Tutor: Yes, but you haven’t predicted tpr.

In (2), a student is requesting that the tutor rephrase their previous utterance (Shah et
al., 2002, p. 34):

 (2) Tutor: How are the falls in TPR and in CC connected to decrease in
 MAP?
 Student: I don’t think I understand the question.
 Tutor: What are the determinants of MAP?

Further, the tutor must have a way of reacting to various types of user input; e.g., by
adjusting the tutorial agenda when the student asks for clarification about past topics
of discussion or when the student asks the tutor to alter the initial overall tutoring
plan (e.g., “Can we move on to the next topic?”).

2 CLARK ET AL.

 In this paper we discuss a new general purpose architecture for intelligent
dialogue systems which addresses these issues: the Architecture for Conversational
Intelligence (ACI) developed at CSLI. The ACI has previously been used in a
dialogue system for multi-modal conversations with a robot helicopter (the WITAS
system; Lemon et al., 2002a, 2002b). We focus here on a recent deployment of this
architecture in the domain of intelligent tutoring. We will first discuss the intelligent
tutoring system we are developing for shipboard damage control. Next, we discuss
the ACI for dialogue systems and what benefits it has for intelligent tutoring.

2. AN INTELLIGENT TUTORING SYSTEM FOR DAMAGE CONTROL

Shipboard damage control refers to the task of containing the effects of fire,
explosions, and other critical events that can occur aboard Naval vessels. The high-
stakes, high-stress nature of this task, together with limited opportunities for real-life
training, make damage control an ideal target for AI-enabled educational
technologies like intelligent tutoring systems.
 We are developing an intelligent tutoring system for automated critiquing of
student performance on a damage control simulator (Clark et al., 2001). The
simulator is DC-Train (Bulitko and Wilkins, 1999), an immersive, multimedia
training environment for damage control. DC-Train's training scenarios simulate a
mixture of physical phenomena (e.g., fire) and personnel issues (e.g., casualties).
 Recent research has shown that elaborate tutorial interaction during problem
solving may be distracting or cause cognitive overload (Katz et al., 2000). This
suggests that less may be best in certain learning situations (Sweller et al., 1998,
cited in Katz et al., 2000): the cognitive load of simply solving a problem may be
high enough that the tutorial interaction should take place after the student has
solved the problem (rather than during the problem solving session); i.e., reflective
tutoring. Further, work by Katz et al. (2000, see also Katz and Allbritton, 2002) has
shown that reflective tutoring has a positive effect on learning and enhances the
acquisition of strategic and conceptual knowledge. Additionally, we take as our
starting point that a tutoring system should model tactics that promote constructive
and effortful responses from students (Chi et al., 2001). For these reasons, the
intelligent tutoring system we have developed for damage control is reflective (the
tutor generates plans for post-practice reflection) and Socratic (the tutor asks
questions rather than giving explanations).
 Figure 1 is a screenshot of the graphical user interface for our reflective
intelligent tutoring system for damage control. On the right side of the screen is a
global view of the ship. Ship compartments are highlighted in coordination with the
speech output of the system. The bottom left corner hosts the transcript of the
student’s conversation with the tutor. The top left corner is the interactive ship
display. This part of the GUI is a common workspace for the student and the tutor.
The conversational participants can manipulate the ship display; e.g., both the

 A GENERAL PURPOSE ARCHITECTURE FOR INTELLIGENT TUTORING SYSTEMS 3

student and tutor can highlight compartments. Thus, the tutor is truly multimodal: it
coordinates linguistic input and output (speech) with non-linguistic input and output
(the user can indicate a compartment with a mouse click or the system can highlight
a compartment).

Figure 1. Screen shot of GUI for reflective intelligent tutorial dialogue system

 (3) provides part of an actual session with our intelligent tutoring system. The
tutor runs on a laptop using Windows 2000.

 (3) Tutor: Hello, we are about to review your session from yesterday.
 All right, are you ready?

 Student: Yes.

 Tutor: In this session there were 5 primary crises and 1 secondary
 crisis. 5 of the 6 crises were resolved. Most of your actions were
 correct, however you made several mistakes.

 OK, let’s discuss a few of those crises. The first crisis was a
 fire here in Crew Living space No. 1. [centers on this

4 CLARK ET AL.

 Compartment and highlights it] This fire was not contained early
 enough. As a result, the fire spread to the adjacent Combat
 system equipment room No. 2. [highlights 2nd compartment]

 OK, let’s review how to handle this crisis. [removes
 highlight from 2nd compartment] What’s the first thing you
 should do when the fire alarm sounds?

 Student: Send repair two to investigate.

 Tutor: Yes, that’s right. However, you failed to do this during the
 session. This is a mistake you made more than once.
 Remember, alarms need to be verified first.

 OK, suppose that there is a fire. What’s the next step?

 Student: Set fire and smoke boundaries.

 Tutor: Yes. That’s what you did during the session.

 OK, what else needs to be done?

 Student: The repair team should fight the fire.

 Tutor: No. You missed a step. Remember, the crisis might interfere

 with other ship systems.

 Let’s try again. What else needs to be done?

 Student: I don’t know.

 Tutor: Well. You should order repair five to mechanically and

 electrically isolate the compartment. But you didn’t do this
 during the session. This is a mistake you made more than once.
 Remember, mechanical and electrical isolation protects crucial
 ship systems.

 All right, suppose isolation has begun and boundaries have been
 set. What’s the next step?

 Student: Fight the fire.

 Tutor: Yes, exactly. That’s what you did.

 …

 A GENERAL PURPOSE ARCHITECTURE FOR INTELLIGENT TUTORING SYSTEMS 5

Tutor: The next crisis was a flood here in Engine room No. 2.
 [highlights compartment] Let’s review how to handle this crisis.

 What’s the first thing you should do when the flood alarm
 sounds?

Student: Send repair two to investigate.

Tutor: Almost. Let’s review the jurisdiction of repair lockers. The flood
 alarm was here in Engine room No. 2 [highlights compartment].
 Please click on the location of the nearest repair locker in the
 left display above. Let me know when you’re ready to continue.

Student: [clicks on correct compartment] Please continue.

Tutor: Yes, that’s right. Which repair locker is that?

Student: Repair five.

Tutor: Yes, that’s right. You should order repair five to investigate the

 compartment. But you sent the wrong repair team during
 the session.

 The dialogue in (3) matches the 5-step dialogue frame that Graesser and Person
(1994) observed in naturalistic tutoring.

 Step 1: Tutor asks question (or presents problem)
 Step 2: Learner answers question (or begins to solve problem)
 Step 3: Tutor gives short immediate feedback on the quality of the answer
 Step 4: The tutor and learner collaboratively improve the quality of the answer
 Step 5: The tutor assesses the learner’s understanding of the answer

 Figure 2 is the overall architecture of our system (ASR = Automated Speech
Recognition, TTS = Text-to-Speech).

6 CLARK ET AL.

Figure 2. Reflective Tutoring Architecture

 In addition to being a Socratic tutor, our tutor shares several features with other
intelligent tutoring systems; e.g., CIRCSIM-Tutor (Zhou et al., 1999) and
Atlas/Andes (Freedman, 2000).

• A knowledge base (problem, solution, and domain knowledge in Figure 2):
DC-Train currently encodes all knowledge relevant to supporting reflective
intelligent tutoring into a structure called a Causal Story Graph. These
expert summaries encode causal relationships between events on the ship as
well as the proper and improper responses to shipboard crises.

• Tutoring tactics (see Figure 2): To respond to student answers to tutor
questions, our tutor draws on a library of tutoring tactics. These tactics are
very similar to the plan operators utilized in the Atlas/Andes system. The
different components of these tactics are the object (what’s being taught),
the preconditions (when a particular tactic can be applied), and the recipe
(what is the method to be used to teach the object). Preconditions on
tutoring tactics involve combinations of a classification of the student’s
response (e.g., a fully correct or incorrect answer) and actions in their

 A GENERAL PURPOSE ARCHITECTURE FOR INTELLIGENT TUTORING SYSTEMS 7

session with the simulator DC-Train (e.g., an error of omission or correct
action).

• An interpretation-generation component (ASR, TTS, Grammar, Parser-
Generator, and Dialogue Manager in Figure 2): In our system, the student's
speech is recognized and parsed into logical forms (LFs). The architecture
also allows the tutor’s speech to be generated from LF inputs, although we
currently use template generation. A dialogue manager inspects the
current dialogue information state to determine how best to incorporate
each new utterance into the dialogue (Lemon et al., 2002a and 2002b).

 An important difference is that CIRCSIM-Tutor and Atlas/Andes are entirely
text-based, whereas ours is a spoken dialogue system (ASR and TTS in Figure 2).
Our speech interface offers greater naturalness than keyboard-based input, and is
also better suited to multimodal interactions than keyboard-based input (namely, one
can point and click while talking but not while typing). In this respect, our tutor is
similar to COVE (Roberts, 2000), a training simulator for conning Navy ships that
uses speech to interact with the student. But whereas COVE uses short
conversational exchanges to coach the student during the simulation, our tutor
engages in extended tutorial dialogues after the simulation has ended. An additional
significant difference between our system and a number of other intelligent tutoring
systems is our use of ‘deep’ processing techniques. While other systems utilize
‘shallow’ statistical approaches like Latent Semantic Analysis (e.g. AutoTutor;
Wiemer-Hastings et al., 1999), our system utilizes Gemini, a parser/generator based
on a symbolic grammar. This approach enables us to provide precise and reliable
meaning representations.
 As discussed in the introduction, conversation with intelligent tutors places the
following requirements on dialogue management (see Lemon et al., 2002b and
Clark, 1996):

• Mixed-initiative: in general, both the student and the tutor should be able to
introduce topics

• Open-ended: there are not rigid pre-determined goals for the dialogue

 In the next four sections, we discuss in more detail the implementation of our
system and how the general purpose architecture for intelligent tutoring systems we
have developed meets these two demands.

3. AN ARCHITECTURE FOR MULTI-MODAL DIALOGUE SYSTEMS

To facilitate the implementation of multi-modal, mixed-initiative interactions we use
the Open Agent Architecture (OAA) (Martin et al., 1999). OAA is a framework for
coordinating multiple asynchronous communicating processes. The core of OAA is

8 CLARK ET AL.

a ‘facilitator’ which manages message passing between a number of encapsulated
software agents that specialize in certain tasks (e.g., speech recognition).
 Our system uses OAA to coordinate the following agents:

• The Gemini NLP system (Dowding et al., 1993): Gemini uses a single
unification grammar both for parsing strings of words into logical forms
(LFs) and for generating sentences from LF inputs (although, as mentioned
above, we do not use this feature currently). This agent enables us to give
precise and reliable meaning representations which allow us to identify
dialogue moves (e.g., wh-query) given a linguistic input; e.g., the question
“What happened?'' has the (simplified) LF: wh-
query(wh([tense(past),action(happen)])).

• The Nuance speech recognition server: The Nuance server converts spoken
utterances to strings of words. It relies on a language model, which is
compiled directly from the Gemini grammar, ensuring that every
recognized utterance is assigned a LF.

• The Festival text-to-speech system: Festival is a speech synthesizer for
system speech output.

• The Architecture for Conversational Intelligence (ACI) coordinates
inputs from the student, interprets the student's dialogue moves, updates
the dialogue context, and delivers speech and graphical outputs to the
student (i.e., generation). This agent is discussed in Section 4.

The first three agents are ‘off-the-shelf’ dialogue system components (apart from the
Gemini grammar, which must be modified for each application). The ACI agent
was written in Java for dialogue management applications in general and is
described in more detail in Sections 4 and 5. This
OAA/Gemini/Nuance/Festival/ACI architecture has also been deployed successfully
in other dialogue systems; e.g., a collaborative human-robot interface (Lemon et al.,
2002a, 2002b).

4. ACTIVITY MODELS

An important part of dialogue context to be modelled is the tutor’s planned activities
(what topics are going to be discussed and how), current activities (what topic is
being discussed) and their execution status (pending, cancelled, etc.). Declarative
descriptions of the goal decompositions of activities (COLLAGEN’s “recipes”,
Atlas/Andes’ “plan operators”, our “Activity Models”) are a vital layer of
representation between the dialogue manager and the tutor.
 Intelligent tutoring systems should be able to plan sequences of atomic actions,
based on higher-level input; e.g., a problem, the student’s solution to that problem,
and domain knowledge. On the basis of this input, the tutor carries out planning
(e.g., an initial overall tutoring plan) and then informs the dialogue manager of the
sequences of activities it wishes to perform. The model contains traditional planning

 A GENERAL PURPOSE ARCHITECTURE FOR INTELLIGENT TUTORING SYSTEMS 9

constraints such as preconditions of actions (as with the tutoring tactics mentioned in
Section 2 and discussed in detail below). Dialogue between the tutor and student
can be used to revise the overall tutorial plan and to update the student model. We
will briefly discuss both of these possible revisions.
 The tutor uses information in an annotated record of the student’s performance to
construct an initial overall tutoring plan; i.e., what problems (e.g., shipboard crises
like fires) are going to be discussed. Our tutor currently makes a list of exemplar
crises that occurred in the student’s session with DC-Train. If more than one crisis of
a given type occurred, the tutor picks the one with the most errors. The motivation
for this particular algorithm is that the student’s knowledge and misconceptions will
be reflected in the errors they make and that exemplar crises will make for the most
interesting dialogues and the most opportunities for learning. This initial overall
tutoring plan can be dynamically revised during the tutorial dialogue; e.g., the
student can ask to skip discussion of a particular topic by saying (some variant of)
“Can we please move on?”
 A student model represents the tutor’s estimate of what the student knows (or
doesn’t) know and what skills the student has (or hasn’t) mastered. The evidence
that is used in constructing a student model is the student’s solution to problems, of
course, but also the student’s interaction with the tutor. For example, the student’s
answers to the tutor’s questions, the student’s explanations, and the student’s
questions to the tutor can all be used to update the student model over time.
 We are developing one representation and reasoning scheme to cover the
spectrum of cases from devices with no planning capabilities to some with more
impressive on-board AI, like intelligent tutoring systems. In the tutor we have
developed, both the dialogue manager and the tutor have access to a “Task Tree”: a
shared representation of planned activities and their execution status. The tree is
built top-down by processing a problem, a student’s solution to that problem, and the
relevant domain knowledge. The nodes of the tree are expanded by the dialogue
manager (via the Activity Models specified for the tutor) until only leaves with
atomic actions are left for the tutor to execute in sequence. The tutor and the
dialogue manager share responsibility for constructing different aspects of the Task
Tree; e.g., the dialogue manager marks transitions between topics (with “OK”, “All
right”) while the tutor constructs the overall initial tutoring plan.
 Tutoring tactics (e.g., hinting) are one type of Activity Model in our tutor. To
initiate a tutoring tactic, the student invokes the tutor by responding to a question.
The tutor searches the library of tutoring tactics to find all of the tactics whose
preconditions are satisfied in the current context. Like the plan operators in other
systems (e.g., Atlas/Andes; Freedman, 2000), each tutorial tactic has a multi-step
recipe (Wilkins, 1998) composed of a sequence of actions. Actions in a recipe can
be primitive actions like providing feedback or complex actions like an embedded
tutoring tactic.
 An example tutoring tactic is given in Figure 3. For legibility, the key elements
are presented in English rather than than Java. The object (or goal) of the tutoring
tactic is to teach the student about an action they failed to perform (an error of
omission). This tactic is used when the student answers the tutor’s question
incorrectly and the student’s action in response to a damage event included an error

10 CLARK ET AL.

of omission. These are the preconditions on the application of this tutoring tactic.
For example, in the dialogue in (3) the student said “The repair team should fight the
fire” (an incorrect answer and the student forgot to isolate the compartment in their
session with DC-Train). The method that the tutor uses to teach the student about
their error of omission is given by the recipe – a series of sequential system actions.

def_strategy discuss_error_of_omission_answer_incorrect
: goal (did_discuss_error_of_omission_answer_incorrect)
: preconditions

(i) the student's answer is incorrect
(ii) the student's actions in response to the damage event included an
error of omission

: recipe
(i) provide negative feedback to the student
(ii) give the student a hint
(iii) ask a follow-up question
(iv) classify the student's response
(v) provide feedback to the student
(vi) tell the student the rule
(vii) tell the student that the topic is changing

Figure 3. Activity Model for Hinting

The tutor utilizes information in a Causal Story Graph (CSG, an annotated

description of the student’s performance in their session with DC-Train) to decide
which tutorial tactic is appropriate with respect to a student's response to a particular
question. For example, in Figure 3, the tutor uses, in the preconditions on the
application of the tutoring tactic, the information in the CSG which classifies the
relevant action as an error of omission, in addition to the classification of the
student's response as an incorrect answer. The preconditions on other tutoring tactics
will involve different combinations of action and response classification. Hence, it
is the combination of the classification of a student's response (as correct, incorrect,
etc.) and action in a DC-Train session (as an error of omission, error of commission,
etc.) which determine which tutoring tactic the tutor uses to teach the student.

The tutor then adds a node to the Task Tree describing the tutoring tactic. The
tutoring tactic specifies what atomic actions should be invoked (e.g., feedback), and
under what conditions they should be invoked. For example, in Figure 3, the tutoring
tactic states that that tutor should,

• provide negative feedback to the student
• give the student a hint
• ask a follow-up question
• classify the student's response
• provide feedback to the student

 A GENERAL PURPOSE ARCHITECTURE FOR INTELLIGENT TUTORING SYSTEMS 11

• tell the student the rule
• tell the student that the topic is changing

 Nodes on the Task Tree can be active, completed, or cancelled. Any change in
the state of a node (e.g., because of a question from the student) is added to the
System Agenda (the stack of issues to be raised by the system – see below). For
example, in (4), the student asks the tutor a “Why”-question following the tutor’s
explanation. The tutor responds to the student’s question by adding the student’s
question to the Task Tree and marking it as active. The tutor then asks the student if
they would like the tutor to display the relevant section of doctrine. After the student
has responded, the node corresponding to the student’s question is marked
completed.

 (4) Tutor: You should request permission from the EOOW to start a
 firepump. But you didn’t do this during the session.
 Remember, you need the EOOW’s permission before
 starting a firepump.
 Student: Why?
 Tutor: Well. This is specified in damage control doctrine. Would
 you like me to display the relevant section of doctrine?
 Student: Yes.
 Tutor: OK. [doctrine is displayed] Let me know when you’re ready
 to continue.

5. DIALOGUE MANAGEMENT ARCHITECTURE

Dialogue Management with the ACI makes use of several recent ideas in dialogue
modeling, described in detail in Lemon et al. (2002a, 2002b). Much of what follows
in this section is an adaptation of the discussion in Lemon et al. (2002b). The
Dialogue Manager creates and updates an Information State, corresponding to a
notion of dialogue context. Dialogue moves (e.g., wh-query, wh-answer) update
information states. A student's dialogue move might send a response to the tutor,
elicit an assertion by the tutor, or prompt a follow-up question. The tutor itself
generates dialogue moves that are treated just like the student's conversational
contributions.
 The ACI includes the following dynamically updated components (see Lemon et
al., 2002a, 2002b for full details):

• The Dialogue Move Tree: a structured history of dialogue moves and
‘threads’, plus a list of ‘active nodes’

• The Task Tree: a temporal and hierarchical structure of activities initiated
by the system or the user, plus their execution status

• The System Agenda: the issues to be raised by the system

12 CLARK ET AL.

• The Salience List: the objects referenced in the dialogue thus far, ordered
by recency

• The Pending List: the system’s questions asked but not yet answered by
the student

• The Modality Buffer: stores gestures for later resolution

 Figure 4 shows an (edited) example of an Information State logged by our
system, displaying the interpretation of “I should send repair two to fight the fire”.

Figure 4. Information State (Dialogue Move Tree)

 Dialogue management involves a set of domain-independent dialogue move types
(e.g., wh-query, wh-answer, etc.; Ginzburg et al., 2001). A dialogue with the system
generates a particular Dialogue Move Tree (DMT). The DMT provides a
representation of the current state of the conversation in terms of a structured history
of dialogue moves. Each node is an instance of a dialogue move type and is linked to
a node on the Task Tree, where appropriate. Further, the DMT determines whether
or not user input can be interpreted in the current dialogue context, and how to
interpret it.
 Incoming logical forms (LFs) are tagged with a dialogue move type. For
example, the LF wh-query(wh([tense(past),action(happen)])) corresponds to the
utterance “What happened”, which has the dialogue move type wh-query. How are
dialogue moves related to the current context? We use the DMT to answer this
question:

 A GENERAL PURPOSE ARCHITECTURE FOR INTELLIGENT TUTORING SYSTEMS 13

• A DMT is a history or “message board” of dialogue contributions,

organized by “thread”, based on activities. In our tutor, threads
correspond to topics like individual ship crises.

• A DMT classifies which incoming utterances can be interpreted in the
current dialogue context, and which cannot be. It thus delimits a space
of possible Information State update functions.

• A DMT has an Active Node List (ANL) which controls the order in
which this function space is searched.

• A DMT classifies how incoming utterances are to be interpreted in the
current dialogue context.

 A particular Dialogue Move Tree can be understood as a function space of
dialogue Information State update functions of the form

 f : Node × Conversational Move Information State Update

where Node is an active node on the dialogue move tree, a Conversational Move is
a structure (Input Logical Form, Activity Tag, Agent) and an Information State is a
function g : IS IS which changes the current IS. The details of the update function
are determined by the node type (e.g., wh-query) and the incoming dialogue move
type (e.g., wh-answer) and its content, as well as the value of the Activity Tag.
 This technique of modelling dialogue context is a variant of “conversational
games” (or “dialogue games”; Carlson, 1983) and, in the context of task-oriented
dialogues like tutoring, “discourse segments” (Grosz and Sidner, 1986). Both of
these accounts of dialogue context rely on the observation that answers generally
follow questions, commands are generally acknowledged, so that dialogues can be
partially described in terms of “adjacency pairs” of such dialogue moves. The ACI’s
notion of Attachment embodies this idea.
 The two main steps of the algorithm controlling dialogue management are
Attachment and Process Node:

• Attachment: processes incoming input Conversational Move c with respect
to the current DMT and Active Node List, and “attach” a new node N
interpreting c to the tree if possible (i.e., find the most active node on the
DMT of which the new node can be a daughter, and add the new node at
that location).

• Process node: process the new node N, if it exists, with respect to the

current information state. Perform an Information State update using the
dialogue move type and content of N.

 The effect of an update function depends on the input conversational move c (in
particular, the dialogue move type and the contents of the logical form) and the node
of the DMT that it attaches to. The possible attachments can be thought of as

14 CLARK ET AL.

adjacency pairs (see Levinson 1983), paired speech acts which organize the
dialogue locally. Each dialogue move class contains information about which node
types it can attach.
 Some examples of different attachments available in the current version of our
tutor can be seen in Figure 5 (where activity tags are not specified, attachment does
not depend on the sharing of an activity tag, as with the node type not-recognized).
For example, the fourth entry in the table states that a wh-query generated by the
tutor, with the activity tag t, is able to attach any wh-answer by the student with that
same activity tag. Similarly, the row for explanation states that any explanation by
the tutor, with the activity tag t, can attach a why-query by the student.

Node Type Activity Tag Speaker Attaches
noun-query t Tutor wh-answer(t,

user)
why-query t Student report(t,

system)
yn-query t Tutor yn-answer(t,

user)
wh-query t Tutor wh-answer(t,

user)
yn-answer t Student report(t,

system)
wh-answer t Student report(t,

system)
explanation t Tutor why(t, user)
not-recognized Student pardon(system)

Figure 5. Attachment in the Dialogue Move Classes

 The possible attachments summarized in Figure 5 constrain the ways in which
DMTs can grow, and thus classify the dialogue structures that can be captured in the
current version of our tutor. As new dialogue move types are added to the tutor, this
table will be extended to cover a greater range of dialogue structures. Note that the
tutor’s dialogue moves appear on the DMT, just as the student’s do.
 Recall the requirements placed on automated tutors discussed in Section 2. The
DMT structure is able to interpret both the student and tutor input as dialogue moves
at any time, thus allowing for mixed-initiative. Further, the DMT can handle
dialogues with no clear endpoint (open-ended). In the next section, we discuss
further benefits of the ACI for intelligent tutoring systems, both in the domain of
shipboard damage control and in general.

 A GENERAL PURPOSE ARCHITECTURE FOR INTELLIGENT TUTORING SYSTEMS 15

6. BENEFITS OF ACI FOR INTELLIGENT TUTORING SYSTEMS

There are several benefits to CSLI’s dialogue management architecture (Lemon et
al., 2002b):

• The dialogue management architecture is reusable across domains. As
mentioned, the same architecture has been successfully implemented in an
unmanned helicopter interface (Lemon et al., 2002a, 2002b). The Activity
Models - e.g., the properties of the relevant activities- and (some aspects of) the
grammar will have to be changed across domains.

• The Dialogue Move Tree/Task Tree distinction allows one to capture the notion
that dialogue works in service of the activity the participants are engaged in.
That is, the structure of the dialogue, as reflected in the Dialogue Move Tree, is
a by-product of other aspects of the dialogue management architecture; e.g., the
Activity Models. The Dialogue Move Tree/Task Tree distinction is supported
by recent theories of dialogue; e.g., Clark's (1996) joint activity theory of
dialogue.

• The dialogue move types are domain-general, and thus reusable in other
domains.

• The architecture supports multi-modality with the Modality Buffer. For
example, we are able to coordinate linguistic input and output (e.g., speech)
with non-linguistic input and output (e.g., the student can indicate a region of
the ship display with a mouse click or the tutor can highlight a compartment).

7. CONCLUSION

We began by identifying two properties of tutorial interaction that a dialogue system
must capture: mixed-initiative and open-endedness. We then explained the domain-
general modelling techniques we used to build an intelligent tutoring system for
damage control. This tutor is novel in that it is the first spoken intelligent tutoring
system. Our speech interface offers greater naturalness than text-based intelligent
tutors and is better suited to multi-modal interactions. We discussed CSLI’s dialogue
management architecture and the algorithms we used to develop a tutor that is multi-
modal, mixed-initiative, and allows for open-ended dialogues.

7.1. Future Work

We are currently expanding the tutoring module to support a wider range of tutoring
tactics and strategies. Some of these tactics and strategies are specific to damage

16 CLARK ET AL.

control. Other tactics and strategies are domain-general. We plan to evaluate how
well CSLI’s dialogue management architecture (the Dialogue Move Tree and the
Activity Models we have developed for our tutor) handles tutorial dialogues in other
domains; e.g., basic electricity and electronics or algebra.

7.2. Evaluation

As part of the research described here, we have done only informal evaluation of the
system so far. Three former damage control assistants, with no previous experience
using our tutor, completed a session with our tutor. Each subject was able to
complete a dialogue with our system, and data has been collected, including speech
recognition error rates. All three dialogues were recorded, and the Information States
logged. We are planning two larger evaluation efforts in the near future: one at
Stanford University, the other at the Naval Postgraduate School in Monterey, CA.
We are also planning several psycholinguistic experiments utilizing our tutor.
Broadly, we would like to find out if students learn better with a spoken
environment. If so, is that directly because of the naturalness of the modality, or
because speech encourages longer utterances and more student initiative?

ACKNOWLEDGEMENTS

This work is supported by the Department of the Navy under research grant
N000140010660, a multidisciplinary university research initiative on natural
language interaction with intelligent tutoring systems. The Architecture for
Conversational Intelligence was funded under the Wallenberg laboratory for
research on Information Technology and Autonomous Systems (WITAS) Project,
Linköping University, by the Wallenberg Foundation, Sweden.

REFERENCES

Bulitko, V.V. and D.C. Wilkins. (1999). Automated instructor assistant for ship damage control. In
 Proceedings of AAAI-99.

Carlson, L. (1983). Dialogue Games: An Approach to Discourse Analysis. Dordrecht: Reidel.

Chi, M. T.H., S. Siler, H. Jeong, T. Yamauchi, and R. G. Hausmann. (2001). Learning from human
 tutoring. Cognitive Science, 25, 471-533.

Clark, B., J. Fry, M. Ginzton, S. Peters, H. Pon-Barry, and Z. Thomsen-Gray. (2001). A Multi-Modal
 Intelligent Tutoring System for Shipboard Damage Control. In Proceedings of IPNMD-2001. (pp.
 121-125).

Clark, H. H. (1996). Using Language. Cambridge: Cambridge University Press.

 A GENERAL PURPOSE ARCHITECTURE FOR INTELLIGENT TUTORING SYSTEMS 17

Dowding, J., J. Gawron, D. Appelt, J. Bear, L. Cherny, R.C. Moore and D. Moran. (1993). Gemini: A
 natural language system for spoken-language understanding. In Proceedings of the ARPA Workshop
 on Human Language Technology.

Freedman, R. (2000). Plan-Based Dialogue Management in a Physics Tutor. In Proceedings of the Sixth
 Applied Natural Language Processing Conference (ANLP 2000).

Ginzburg, J., I. A. Sag, and M. Purver. (2001). Integrating Conversational Move Types in the Grammar of
 Conversation. In BI-DIALOG 2001 - Proceedings of the 5th Workshop on Formal Semantics and
 Pragmatics of Dialogue, (pp. 45-56).

Graesser, A. and Person, N.K.. (1994). Question asking during tutoring. American Educational Research
 Journal, 31, 104-137.

Graesser, A., K. Wiemer-Hastings, P. Wiemer-Hastings, R. Kreuz and the Tutoring Research Group.
 (2000). AutoTutor: a simulation of a human tutor. Journal of Cognitive Systems Research, 1, 35-51.

Grosz, B. and C. Sidner. (1986). Attentions, intentions, and the structure of discourse. Computational
 Linguistics, 12(3), 175-204.

Katz, S., G. O’Donnell, and H. Kay. (2000). An Approach to Analyzing the Role and Structure of
 Reflective Dialogue. International Journal of Artificial Intelligence in Education, 11, 320-343.

Katz, S. and Allbritton, D. (2002). Going Beyond the Problem Given: How Human Tutors Use Post-
 practice Discussions to Support Transfer. In S. A. Cerri, G. Gouardères, and F. Paraguaçu (Eds.),
 Proceedings of 6th International Conference, ITS 2002 (pp. 641-650). Berlin: Springer.

Lemon, O., A. Gruenstein, A. Battle, and S. Peters. (2002a). Multi-tasking and Collaborative Activities in
 Dialogue Systems. In Proceedings of 3rd SIGdial Workshop on Discourse and Dialogue. (pp. 131-
 124).

Lemon, O., A. Gruenstein and S. Peters. (2002b). Collaborative Activities and Multi-tasking in
 Dialogue Systems. In C. Gardent (Ed.), Traitement Automatique des Langues (TAL, special issue
 on dialogue), 43(2), 131-154.

Levinson, S. (1983). Pragmatics. Cambridge: Cambridge University Press.

Martin, D., A. Cheyer and D. Moran. (1999). The Open Agent Architecture: a framework for building
 distributed software systems. Applied Artificial Intelligence, 13, 1-2.

Roberts, B. (2000). Coaching driving skills in a shiphandling trainer. In Proceedings of the AAAI Fall
 Symposium on Building Dialogue Systems for Tutorial Applications.

Shah, F., M. Evens, J. Michael, and A. Rovick. (2002). Classifying Student Initiatives and Tutor
 esponses in Human Keyboard-to-Keyboard Tutoring Sessions. Discourse Processes, 32, 23-52.

Sweller, J., van Merriënboer, J., and Paas, F. (1998). Cognitive architecture and instructional design.
 Educational Psychology Review, 10(3), 251-296.

Wiemer-Hastings, P. K. Wiemer-Hastings, and A. Graesser. (1999). Improving an intelligent tutor's
 comprehension of students with latent semantic analysis. In S.P. Lajoie and M. Vivet (Eds.),
 Artificial Intelligence in Education (Proceedings of AIED '99) (pp.535-542). Amsterdam: IOS Press.

Wilkins, D. (1988). Practical Planning: Extending the Classical AI Planning Paradigm. San Mateo, CA:
 Morgan Kaufmann

18 CLARK ET AL.

Zhou, Y., R. Freedman, M. Glass, J. Michael, A. Rovick, and M. Evens. (1999). Delivering hints in a
 dialogue-based intelligent tutoring system. In Proceedings of AAAI-99.

