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Abstract. Teachable agents are pedagogical agents that employ the ‘learning-
by-teaching’ strategy, which facilitates learning by encouraging students to
construct explanations, reflect on misconceptions, and elaborate on what they
know. Teachable agents present unique opportunities to maximize the benefits
of a ‘learning-by-teaching’ experience. For example, teachable agents can
provide socio-emotional support to learners, influencing learner self-efficacy and
motivation, and increasing learning. Prior work has found that a teachable agent
which engages learners socially through social dialogue and paraverbal adap-
tation on pitch can have positive effects on rapport and learning. In this work,
we introduce Emma, a teachable robotic agent that can speak socially and adapt
on both pitch and loudness. Based on the phenomenon of entrainment, multi-
feature adaptation on tone and loudness has been found in human-human
interactions to be highly correlated to learning and social engagement. In a study
with 48 middle school participants, we performed a novel exploration of how
multi-feature adaptation can influence learner rapport and learning as an inde-
pendent social behavior and combined with social dialogue. We found signifi-
cantly more rapport for Emma when the robot both adapted and spoke socially
than when Emma only adapted and indications of a similar trend for learning.
Additionally, it appears that an individual’s initial comfort level with robots may
influence how they respond to such behavior, suggesting that for individuals
who are more comfortable interacting with robots, social behavior may have a
more positive influence.
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1 Introduction

When teaching others, learners attend more to the problem, reflect on misconceptions
when correcting their peers’ errors, and elaborate on their knowledge to construct
explanations, leading to enhanced learning [1]. We are interested in exploring how a
pedagogical agent can be used to help learners have successful “learning-by-teaching”
experiences. Some research has shown that when learners feel more rapport for their
agent, they are more likely to benefit [2]. We focus on how an agent’s social behavior
can promote rapport and potentially influence engagement and learning.

Social behaviors that can enhance rapport include facial expressions, movement,
and social dialogue. Social dialogue in particular has been found to influence
engagement, motivation, and learning [3, 4]. In this work, we are interested in a
relatively novel area of social behavior which is complementary to social dialogue:
paraverbal behavior (i.e. loudness and tone of voice). Some early work on paraverbal
behavior has shown that learners respond more positively to pedagogical agents which
utilize dynamic paraverbal expressions [, 6]. We explore paraverbal behavior based on
the conversational phenomenon of entrainment. Entrainment occurs when speakers
adapt their behavior, including paraverbal features such as tone and loudness, to one
another, becoming more similar over time. In human-human interactions, entrainment
has been found to be related to rapport, agreement, engagement, and communicative
effectiveness [7-10]. In human-computer interactions, we found that a teachable robot
that entrained on pitch and utilized social dialogue increased learning significantly [11].

It is an open question whether entrainment can have a positive effect on rapport and
learning on its own or if it is more powerful in the presence of other social behavior.
Implementing paraverbal entrainment in agents and robots is still in the early stages,
and explorations of entrainment as an independent social behavior are limited. On the
one hand, the Communication Accommodation Theory (CAT) suggests that individ-
uals entrain to achieve social approval [12]; an individual on the receiving end of a high
level of entrainment is likely to feel more rapport for their partner than if they were a
receiver of low entrainment. This would suggest that entrainment as an independent
social behavior (i.e., in the absence of social dialogue) might enhance rapport. On the
other hand, fine-grained analyses of human-human entrainment suggest that people
entrain differently depending on dialogue content, such as entraining more on pitch
when speaking socially [13, 14]. Entrainment might play a stronger role in building
rapport when it is accompanied by other social behavior like social dialogue.

In this work, we explore how paraverbal entrainment influences rapport and
learning with a pedagogical agent by comparing three versions of the agent: a non-
social version, a version which introduces paraverbal entrainment, and a version which
combines paraverbal entrainment with social dialogue. To implement entrainment, we
adapt paraverbal features over time. Prior work automating entrainment has generally
focused on static approaches, where adaptation is relatively constant. Our previous
implementation was one of the first to explore adaptation over time, called convergence
[11]. In that prior work, we implemented convergence on one feature, pitch. However,
entrainment on both pitch and loudness is more common in human interactions and is
highly correlated with task-success and learning [15, 16]. For this work, we explore
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convergence on both pitch and loudness. This approach more closely mirrors obser-
vations of human conversation and may have stronger effects on rapport.

Another open question regarding the social effects of paraverbal entrainment is the
role of individual differences. Prior work has indicated individual differences influence
responses to social behavior [17-19], and these differences have largely been defined
by gender. However, positioning different responses as broad gender differences might
not appropriately represent the characteristics, experiences, and expectations that create
these distinctions [20]. In human-human interaction, the dynamic judgements people
make about their partners are based on their behavioral expectations of their partner,
and these judgements form the basis for how rapport is built [21, 22]. In human-
computer interactions, comfort level might better reflect the expectations and prior
experiences that influence social responses to social behavior. Liete and colleagues
found that as children got more comfortable with the iCat robot over multiple inter-
actions, they began talking to the robot more off-task [23], and Huttenrauch and col-
leagues found higher engagement when individuals interacted with a robot that they
were more comfortable with [24]. Individuals who are more comfortable interacting
with a pedagogical agent might have higher expectations of the agent’s ability to be
social. Individuals with low comfort might be more cautious, more prone to anxiety
and stress, with no expectations regarding an agent’s social behavior. Depending on
how expectations are met, low-comfort and high-comfort individuals might have dif-
ferent responses to social behavior. We therefore include an analysis on how comfort
level influences feelings of rapport and learning in our exploration of a social,
entraining pedagogical agent.

To examine paraverbal entrainment, social dialogue, and the effects of comfort-
level, we utilize a type of pedagogical agent known as a teachable robot. Teachable
robots have demonstrated potential in learning scenarios, including the ability to pro-
mote motivation, self-confidence, social engagement, and learning [25-27]. Teaching
an agent can be beneficial due to the protégé effect, where learners can both feel more
responsible for their agent and believe the onus of failure belongs to the agent, easing
the negative repercussions of failure [28]. Influencing social responses may help
enhance this protégé effect. Our teachable robot is a Nao robot named Emma. Emma
engages learners using spoken dialogue, and learners teach Emma how to solve math
problems. With Emma, we conducted a study with 48 middle school participants where
learners taught Emma in one of three conditions: (1) an entraining condition where
Emma converged on pitch and loudness, (2) a social + entraining condition where
Emma spoke socially and converged (3) a non-social control. In the next section, we
describe Emma, the implementation of paraverbal entrainment, and social dialogue. We
then describe the study and the results of the three conditions in Sects. 3 and 4, and we
discuss these results in Sect. 5.

2 Teachable Robot System

Emma is a Nao robot that 7™ and 8™ grade learners teach how to solve proportions,
equations, and ratios; an example problem is given in Fig. 1. We describe the system in
the next section, followed by the entrainment and social dialogue design.
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Problem 1
Emma’s friends have been arguing over who can
make s’'mores faster. Emma has an equation for how
fast Tasha can make s’'mores. Help her figure out an
equation for how fast Zach can make s’'mores.

Step S’'more Minutes S’mores Setup Slope

Maker (y) (x) (b) (m)
0 Tasha 8 2 4 2
[1]zach | o | 2 [ 1] |

Fig. 1. Example of a problem, and an image of a learner interacting with Emma.

2.1 System

Learners taught Emma how to solve the math problems using spoken language and a
touch-screen interface on a tablet computer (Microsoft Surface Pro). For each problem,
Emma and the learner were given partial information, such as the second row in the
table in Fig. 1. Emma initiated dialogue requesting the learner’s guidance on how to
solve for the missing information. To speak to Emma, the learner pressed and held a
button on the interface while they spoke. The speech interaction was real-time. After
the learner spoke, an image would appear on the screen to indicate that Emma was
‘thinking” during which time a response was generated. The dialogue system consisted
of an automatic speech recognizer (ASR), a dialogue manager, a paraverbal feature
extractor, and a module for paraverbal manipulation and text-to-speech (TTS).

For the ASR, we utilized the HTML5 Speech API available in Chrome. For the
paraverbal feature extraction, we utilized Praat [29]. For the paraverbal manipulation
and TTS generation, we utilized the Nao robot’s TTS system. For the dialogue manager
we utilized a rule-based chatbot system with the AIML framework, making use of the
PandoraBots tool for AIML [30]. The AIML framework implements a rule-based
process of linking keywords to pattern/transform rules and has shown promise as a
means of dialogue management [3]. We utilized this process to develop responses
suited to the domain content of Emma by identifying potential keywords in the
learners’ utterances and designing the rules and transforms to create Emma’s responses.

To facilitate the dialogue flow and reduce the effects of ASR errors, we incorpo-
rated several additional pieces of functionality. Keywords were mapped to potential
explanation paths for each problem which could kick off short dialogue trees when
matched, helping to provide context for identifying appropriate responses. State
information such as the current problem and step was also used to provide additional
context. If a learner’s speech could not be matched, a response was selected from a set
of ‘generic’ utterances which included requests for clarification (i.e. “can you please
repeat that?”). Finally, we enabled “autonomous life”. This is a default capability that
comes with the Nao robot and introduces a slight swaying and listening behavior
indicating awareness.
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2.2 Multi-feature Paraverbal Entrainment as Convergence

We implemented a form of multi-feature entrainment based on the single feature
approach in our previous work. Previously, we implemented a form of convergence in
which pitch was adapted over a series of turns. We mirrored this approach to adapt
pitch and loudness over time. Using the learner’s mean pitch and mean loudness, we
adjusted the robot’s pitch first and then the robot’s loudness such that both features
converged or grew closer to the learner’s features. We used the text-to-speech
(TTS) system which accompanies the Nao robot to generate and modify the responses.

reset
Problem One Problem Two
converge converge
' ° \ 4 \
Pitch ¢ 3
(Hz) o o ¢ o o
]
Loudness ° ° °
(dB) PR ) [ [ ) ° °
0 1 2 3 4 5 6 7 8
Dialogue Turns
@ Lcarner Nico

Fig. 2. Pitch and loudness both converge to the learner over time.

The manipulation of Emma’s prosody was designed to incrementally converge
toward the learner over the course of five dialogue turns as shown in Fig. 2. The degree
to which a single utterance was adjusted was calculated as a percentage of the dif-
ference between the learner’s mean and Emma’s prior mean, modulated by the number
of exchanges that had passed (one exchange = learner speaks, Emma speaks) and five,
the number of exchanges allowed to pass before maximum convergence. Five was
chosen as the number of exchanges prior to maximum convergence based on the
average number of exchanges per step found to occur in four pilot evaluations. At the
beginning of the conversation before the dialogue has begun, Emma’s speech is gen-
erated at the specified baseline values for Emma (i.e. 230 Hz, 68 db). With the max-
imum number of exchanges prior to convergence set to five, Emma’s speech is adapted
in the direction of the user by 20% after one exchange, 40% after two exchanges by,
60% after three, and so on. At five exchanges and beyond until a reset is indicated,
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Emma’s TTS will be generated at a mean approximated based on the estimated mean of
the learner. When manipulating multiple features, it is necessary to consider how the
features interact [31]. With the Nao TTS system, we found the effects of manipulating
pitch on loudness were lower, with an average 0.5 dB change. We concluded that

manipulating pitch in this way should have minimal effects on loudness.

Table 1. Example of social and non-social dialogue between Emma and learner

Non-social dialogue Social dialogue
Emma: Before I go to the store, can you help | Sweet! Before I go to the store, can we
me figure out how much of my battery | figure out how much of my battery I
I will use over time? will use over time?
Learner: | And we need-we need to figure out Yes, I can!
how much for one hour. So, let’s
multiply...
Emma: So, I know I use 1/20th of the battery | Yay! Thank you! You are awesome.
in 2/3rds of an hour. I need to figure Where do we start?
out how much I use in one hour. So, I
multiply?
Learner: | Yeah we multiply two thirds by three Do you see that the time is one hour?
over two. So, we must try and s-either times or
divide it by the, um, battery usage
Emma: I think I get it. But can you explain Oh right! You're so smart! So, we
your thoughts about why I multiply? know I use 1/20th of the battery in
2/3rds of an hour. To figure out how
much I use in one hour, we multiply?

2.3 Social Dialogue

In addition to multi-feature entrainment, Emma can speak socially. Emma’s social
dialogue consisted of the same exact social strategies as designed and explored in our
own prior work [11, 32] and includes behaviors such as name usage, inclusive lan-
guage, praise, and off-task dialogue. Emma introduces one to two of these behaviors in
every utterance. These behaviors are based on observations of social dialogue during
peer tutoring [33] and theories of rapport, which suggest that individuals manage
rapport through positivity, attention, and linguistic politeness [21, 22, 34]. Prior work
has shown that these social dialogue strategies can moderately enhance learning when
introduced on their own, and that combining these social dialogue behaviors with
entrainment on pitch significantly enhanced learning [11]. Examples of the social
dialogue from this study can be found in Table 1.
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3 Study

We conducted a between-subjects experiment in which learners taught Emma in one of
three conditions: (1) non-social: Emma exhibited dialogue to foster learning (no social
dialogue, no entrainment), (2) entraining: Emma entrained to the learner on pitch and
loudness, and (3) social + entraining: Emma entrained on pitch and loudness and
spoke socially. Across all conditions, the instructions and the content were held
constant.

Participants were 48 middle-school students from a public middle school in the
United States with a mean age of 13.1 (SD = 0.75) (see Table 2). Sessions lasted
60 min and took place at the school. As in Fig. 1, participants sat a desk with the tablet
in front of them. Emma stood on the desk to the right of the participant. Two partic-
ipants experienced technical issues and were excluded. Thus, 15 participants were in
the non-social condition, 15 in the entraining, and 16 in the social-entraining.

Table 2. Gender breakdown and dialogue statistics per session

Females | Males | Turns Words per turn
Non-social 8 8 116 (24)| 7.1 (2.5)
Entraining 9 7 125 (26) 9.2 (3.2)
Social-entraining | 9 7 119 (21) | 8.9 (3.3)

Participants began with a short pre-survey and then completed a 10-min pretest.
After completing the pretest, they were given a few minutes to review the worked-out
solutions to the problems pertaining to Emma. They watched a short video on how to
interact with Emma and then taught her for 30 min. Afterwards, they completed a 10-
min posttest and a short survey on self-efficacy, rapport, and their goals. For this
analysis, we were interested in the effects of rapport, learning, and comfort. We did not
explore effects of self-efficacy or goals here.

To measure rapport, we asked 12 questions on attention, positivity, and coordi-
nation [34] averaged to create a single construct (Cronbach’s o = 0.81). To assess
learning, we utilized a pretest-posttest design with two isomorphic tests counter-
balanced within condition. The tests contained conceptual and procedural questions on
ratios, proportions, and word problems, and were iterated on with four pilot studies.
The scores were used in statistical analyses to assess learning. We measured comfort
level towards robots with two questions on a Likert scale of 1 to 5: “I feel comfortable
interacting with human-looking robots” and “I feel comfortable interacting with
robots.” We designed these questions based on work on comfort level in other domains
[35-37]. We averaged the two questions (Cronbach’s o = 0.79) and then split the result
into a high/low comfort categorical variable where scores less than three were low
comfort (n = 23) and scores greater than three were high (n = 25).
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4 Results

We were interested in two open questions regarding paraverbal entrainment: (1) how
paraverbal entrainment influences rapport and learning and (2) the role of comfort level
in influencing rapport responses to entrainment. In particular, we were interested in
how entrainment performs as an independent social behavior. We explored these
questions with the teachable robot Emma where learners taught Emma in one of three
conditions: a social-entraining condition, an entraining only condition, and a non-social
condition. The descriptive statistics for comfort level, rapport, and learning are given in
Table 3. Despite random assignment to conditions, the pretest scores for the non-social
condition were significantly higher than the social-entraining (p = .02) and the
entrainment-only conditions (p = .02). Therefore, in all the analyses reported, we
controlled for pre-test. We also evaluated whether comfort level interacting with robots
differed across conditions prior to analyzing how this factor influenced responses; we
did not observe any significant differences, y>(2, 46) = .61, p = .74.

Table 3. Descriptive statistics for rapport, learning, comfort, and speech recognition errors.

Non-social | Entraining | Social-entraining

Pretest A48 (.18) .28 (.19) | .29 (.19)
Posttest 63 (16) .36(25) |.53(22)
Rapport 4.1 (47) 3.9 (54) 4.4 (47)

Comfort level |4.1 (.24) [4.0 (20) |4.2 (.17)
Speech errors | 17.5 (6) 16.4 (9) 18.7 (9)

A power analysis conducted beforehand using the effect size for rapport (d = .41)
from our previous work would suggest a sample size of 222 to obtain statistical power
at the recommended .80 level [38]. However, it was infeasible to collect that amount of
data. Therefore, we interpret significance at p < .005, which has been suggested as a
method for handling underpowered studies [39]. In addition, we report the raw Bayes
factor which has been suggested as an alternative to assessing statistical significance in
data [40-42]. With the Bayes Factor, we have additional insight into whether the data
favors the null hypothesis over the alternative. We calculate the Bayes Factor using the
approach suggested by Rouder and colleagues [43].

4.1 Rapport

We utilized an ANCOVA to explore how rapport responses differed by condition and
how comfort level influenced these responses. We treated rapport as the dependent
variable, condition and comfort level as independent variables, and pre-test as a
covariate. Condition was significant, F (2, 40) = 6.6, p = 0.003, nz =0.20, as was
comfort level, F (1, 40) = 11.5, p < 0.002, n2 = 0.20. We found a slight interaction
between comfort level and condition F (2, 40) = 3.2, p = .05, n* = 0.07 though not
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significant at p < 0.005. We explored differences in rapport for individuals with high-
comfort versus low-comfort. Individuals with low-comfort did not differ in their rapport
between the social-entraining (M = 4.1, SD = .51), entraining (M = 3.8, .73), and non-
social M = 3.8, SD = .41) conditions, F (2, 19) = .86, p = 4, n2 = 0.12. However,
individuals who expressed high comfort interacting with robots were significantly
influenced by the robot’s social behavior, F (2, 21) = 6.65, p = .005, nz = 0.31, with
individuals in the social-entraining condition feeling significantly more rapport
M =4.64, SD = .3) than individuals in the entraining-only condition (M = 4.0,
SD = .31). The estimated Bayes factor suggested that the data were 6.1 to 1 in favor of
the alternative hypothesis, supporting the significant difference between the social-
entraining and entraining conditions. The difference between the social-entraining and
the non-social condition was not significant.

4.2 Learning

We then explored whether learning differed across conditions with a repeated measures
ANOVA. We treated pretest and posttest as the dependent variables and condition as the
independent variable. Overall, learning was significant, F (1, 43) = 47.9, p < .001,
nz = (.53, and there was a suggestion of an effect of condition, F (2,43) = 3.91,p = .03,
n? = 0.12. Tukey post-hoc analyses suggest that the difference is due to the social-
entraining condition compared to the entraining-only (p = .03). The nonsocial condition
did not have significantly higher gain than the entraining-only (p = .08), nor did the
social-entraining condition over the non-social condition, (p = .8). Potentially, learners
who felt more rapport for Emma may have been more willing to teach her, address
misconceptions, and learn. We analyzed this with a partial correlation between rapport
and post-test, controlling for pretest. The correlation was not significant, r (41) = .29,
p = .05 and the Bayes factor was 1.0 with the data equally likely under either hypothesis.

Finally, we explored the role of comfort level with respect to learning. Adding
comfort level to the repeated measures ANOVA, we did not observe significant dif-
ferences on learning for individuals with high versus low comfort, F (2, 40) = 2.5,
p = .12, n? = 0.02. Condition and comfort level suggested a potential interaction on
learning, F (2, 40) = 2.54, p = .09, n? = 0.02. Exploring post hoc analyses, individuals
with a high comfort around robots approached significantly less learning in the
entraining-only condition compared to the social-entraining (p = .006). However, the
estimated Bayes factor was 1.0. The entraining-only and non-social was not significant

(p = .04).

5 Discussion

We were interested in the effects of paraverbal entrainment on feelings of rapport and
learning, and the role of comfort level in understanding those effects. Exploring the
responses of 48 middle school learners as they interacted with the teachable robot
Emma, we found a significant difference in how much rapport learners felt when Emma
entrained and spoke socially compared to when Emma only entrained. This difference
appears to have been driven by the individuals who felt more comfortable interacting
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with robots. We also observed significant learning overall and a slight trend of
increased learning in the social-entraining condition. We did not observe significant
differences between the social-entraining condition and the non-social control.

Unlike prior work, we explored multi-feature paraverbal entrainment as an inde-
pendent social behavior in its own condition. We found the social behavior of
entrainment performed poorly on its own. One possible explanation is that automatic
speech recognition errors (ASR) may have contributed to the dip in social responses.
We calculated the number of ASR errors (Table 3). However, ASR errors did not differ
across conditions, F (2, 43) = .31, p = .74, and did not appear to influence the results.

People build rapport with multiple social behaviors, and the combination of social
behaviors in agents and robots has been found to be significantly more effective on
some occasions than a single behavior [6, 44]. Our results indicate social behaviors
may interact with one another, where the presence of one behavior can enhance the
perception of the other. We utilized the same exact social dialogue here as presented in
our prior work. In that prior work, social dialogue alone had a moderate effect on
learning, but, when combined with pitch entrainment, social dialogue significantly
enhanced learning over the non-social control. Here, when that same social dialogue is
combined with an entrainment behavior that performed poorly on its own, rapport
responses were enhanced. The social-entraining condition performed well, and even
better than expected if we consider the prior mediocre performance of social dialogue
as an independent social behavior and the poor performance of entrainment. This
suggests that social behaviors can interact with one another in potentially positive yet
complex relationships, while social behaviors when used alone may not have the
desired effects.

We also found that individuals with a higher comfort level interacting with robots
drove the difference in rapport responses. It is possible that individuals who were more
comfortable had higher expectations regarding Emma’s ability to be social. In human-
human analyses of entrainment, higher entrainment can occur when individuals are
speaking socially [14]. For high-comfort individuals, entrainment in the absence of
social dialogue may have been less appealing than no social behavior at all. We did not
observe significant differences across conditions for individuals who were less com-
fortable. This suggests that for individuals who were less comfortable, the robot’s social
behavior neither positively nor negatively violated their expectations of how the robot
should behave. Low-comfort individuals may have been more stressed or anxious due to
being less comfortable; for the robot’s social behavior to have a positive effect, these
factors may need to be addressed first. Interestingly, comfort level was not related to an
individual’s prior experience with robots or their gender, y* (1, 46) = .49, p = .48.

6 Conclusion

We explored the potential of paraverbal entrainment for enhancing rapport and learning
with the teachable robot Emma. We found that individuals felt more rapport for Emma
when the robot both adapted and spoke socially than when Emma only adapted and
indications of a similar trend for learning. This appeared to be driven by individuals
who were more comfortable around robots. These findings suggest several directions
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for future work. First, in designing entrainment, there are alternative approaches based
on how people adapt; exploring these additional patterns and combinations with social
behavior is an important area of future work. Secondly, the social plus entraining
condition was more appealing to individuals highly comfortable interacting with
robots. Future work should explore whether increasing how comfortable individuals
are around robots is needed before social behavior can have positive effects on rapport.
Overall, paraverbal entrainment is a complex phenomenon and responses to it are
influenced by individual differences; understanding these differences is vital for use of
social behavior to enhance rapport and learning.
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