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ABSTRACT 

 

Observed frequently in human-human interactions, 

entrainment is a social phenomenon in which speakers 

become more like each other over the course of a 

conversation. Acoustic-prosodic entrainment occurs when 

individuals adapt their acoustic-prosodic speech features, 

such as pitch and intensity. Correlated with communicative 

success, naturalness, and conversational flow as well as social 

variables such as rapport, a dialogue system which 

automatically entrains has the potential to improve verbal 

interactions by increasing rapport, naturalness, and 

conversational flow. In an application like the learning 

companion, such a socially responsive dialogue system may 

improve learning and motivation. However, it is not clear 

how to produce entrainment in an automatic dialogue system 

in ways that produce the effects seen in human-human 

dialogue. In this paper, we take the first steps towards 

implementing a spoken dialogue system which can entrain. 

We propose three methods of pitch adaptation based on 

analysis of human entrainment, and design and implement a 

system which can manipulate the pitch of text-to-speech 

output adaptively. We find a clear relationship between 

perceptions of rapport and different forms of pitch 

adaptations. Certain adaptations are perceived as 

significantly more natural and rapport-like. Ultimately, 

adapting by shifting the pitch contour of the text-to-speech 

output by the mean pitch of the user results in the highest 

reported measures of rapport and naturalness. 

 

Index Terms— pitch, adaptation, dialogue system, 

naturalness, rapport 

 

1. INTRODUCTION 

 

Spoken dialogue systems are a part of mainstream society, 

from automated answering systems to the advent of voiced 

personal assistants such as Siri, Google Now, and more 

recently, Cortana. With advances made in automatic speech 

recognition (ASR), we’ve seen the ability of these 

technologies to hold a conversation improve considerably. As 

dialogue systems become more pervasive, there is an 

increasingly important role for socially responsive dialogue 

systems that can effectively socially engage the user. 

One application where a socially responsive dialogue system 

is potentially very impactful is the learning companion [4]. A 

learning companion provides a support system for students 

with the goal of improving learning by providing both task-

related feedback and motivational support. Learning 

companions, based on the theory that learning is influenced 

by social interactions [32], require social sensitivity to 

influence students’ socio-motivational factors and increase 

student learning. In the case of learning companions, the 

ability to be socially responsive positively impacts learning 

(e.g., [13]).  

 

In this paper, we are interested in how we can utilize acoustic-

prosodic features of speech to improve the social 

responsiveness of a learning companion’s dialogue system. 

We explore the phenomenon acoustic-prosodic entrainment 

as a possible mechanism. Acoustic-prosodic entrainment is 

where two speakers adapt their acoustic-prosodic features 

including their tone, intensity, and speaking rate to mirror one 

another [16]. Correlated with a number of factors including 

communicative success, conversational flow, and social 

factors like rapport, acoustic-prosodic entrainment is critical 

to the naturalness and flow of dialogue [1, 19, 23]. A dialogue 

system which automatically entrains has the potential to 

improve verbal interactions by increasing the above factors. 

In a learning companion, such a dialogue system may 

improve learning and motivation as well. 

 

To this end, we design and implement a system which adapts 

the pitch of a text-to-speech (TTS) output real-time, to 

accommodate to the pitch of the user. We implement three 

different forms of pitch adaptation, inspired by how human 

conversational partners entrain. We collect data from four 

individuals interacting with each form of pitch adaptation, 

and then, using crowd-sourced analysis via Amazon 

Mechanical Turk, we compare the different adaptations to the 

baseline TTS on the rapport and naturalness perceived by the 

third party observer. We find the most effective adaptation is 

on pitch mean where the standard TTS pitch contour is 

maintained but the contour is adapted to the average pitch of 

the user. These findings provide insight into how the pitch 

adaptations are perceived overall and how to proceed with 

creating effective entrainment in the dialogue system of a 

learning companion.   

 



In the below sections, we motivate this work in relation to 

entrainment, rapport, and learning and describe related work 

on manipulating acoustic prosodic features. In Section 2, we 

describe in more detail the pitch adaptations performed and 

our hypotheses. Section 3 outlines the intended application 

and the dialogue interface we built to implement the pitch 

adaptations. Section 4 outlines the process and results of 

evaluating the naturalness and rapport of these adaptations. 

We discuss the implications of these results in Section 5, 

concluding with a brief discussion and thoughts on future 

work in Section 6. 

 

1.1 Entrainment, Rapport, & Learning 

 

Entrainment, known also as accommodation, occurs when 

dialogue partners adapt their behavior to each other during an 

interaction. Entrainment can be gestural, via gaze or facial 

expressions [14], word-based or lexical [8], or speech-based 

[26]. In this paper, we are interested specifically in acoustic-

prosodic entrainment, when two speakers adapt their 

acoustic-prosodic speech features to one another, and we 

focus on solely on one acoustic-prosodic feature of 

entrainment – pitch.  

 

Entrainment on pitch prominently differentiates 

communicative success [1] and entrainment measures 

derived from pitch features are significantly higher in positive 

interactions than in negative interactions [15]. In addition, 

entrainment on pitch is linked to both rapport and learning 

[30, 20]. In theories of learning, it has been proposed that all 

learning is social [32] and feelings of rapport have been 

shown to impact how much students learn from interactions 

with learning companions [25]. By entraining on pitch, a 

learning companion may increase rapport, and the increased 

rapport may improve learning gains.  

 

1.2 Manipulating Acoustic-Prosodic Features 
 

Manipulating the acoustic-prosodic features of the text-to-

speech output of a dialogue system to influence entrainment 

has precedence in past work. These efforts were focused on 

features which are easy to manipulate, such as intensity and 

speaking rate [28, 29, 5]. In these scenarios, the acoustic-

prosodic features were adjusted in order to transform the 

overall dialogue output without regard to the human speaker. 

The results demonstrate that humans will entrain to a 

computer, and adapt their own voice to that of the computer. 

The manipulations did not explore the effect of a computer 

adapting to a human. 

 

Adapting the acoustic-prosodic features of the output of a 

spoken dialogue system to a user is a more recent innovation. 

In her thesis on entrainment in human-human and human-

computer dialogue [17], Rivka Levitan appears to be the first 

to look at adapting text-to-speech on a turn-by-turn basis 

based on the user’s acoustic-prosodic features. Levitan found 

that individuals interacting with a virtual agent which 

entrained on intensity and speaking rate unconsciously 

trusted that agent more than an agent which did not entrain 

on these features. This provides support that entrainment 

triggers social responses in line with traditional human-

computer interaction theory, which suggests that humans 

respond socially to computers in similar ways as they respond 

to other humans [22].  

 

For this work, we take a similar approach to Levitan in 

adapting acoustic-prosodic features on a turn-by-turn basis 

but our focus is on pitch. While pitch has been looked at for 

improving the naturalness of text-to-speech [6, 31, 33], it has 

received less attention as feature for automated entrainment. 

Given the history of entrainment on pitch, we hope to confirm 

that humans respond to an entraining computer in the same 

way they respond to entraining humans by finding that social 

variables correlated with human-human entrainment on pitch 

can be affected by computer adaptation. As the best way to 

entrain on pitch is not yet clear, we evaluate the success of 

different pitch adaptations in producing meaningful 

entrainment. 

 

2. PITCH ADAPTATION METHODOLOGY 

 

Three forms of pitch adaptation are proposed, inspired by 

observations of how human conversation partners entrain. 

Prosodic entrainment is often measured along multiple 

dimensions. We focus on proximity. Proximity measures how 

near the acoustic-prosodic features of two speakers are, on a 

turn-by-turn basis. Proximal entrainment on pitch has been 

linked to greater rapport, communicative success, and 

positivity [19, 1, 15]. It is the most frequent form of 

entrainment observed in turn-by-turn analyses, compared to 

other acoustic features and types of entrainment.  

 

The three proposed methods of pitch adaptation operate at the 

turn-level. The system adapts its pitch based on the estimated 

pitch values from the previous speaker’s turn, as opposed to 

the longer dialogue history. Figure 1 illustrates the pitch 

contour of a sample synthesized waveform alongside three 

adaptations.   

 

The first method of pitch adaptation is mirror partner. With 

mirror partner, we adapt the text to speech output to the entire 

pitch contour of the speaker’s previous turn by replacing the 

original contour of the TTS with the contour of the speaker. 

This approach to adaptation would maximize the level of 

entrainment, following the metrics used in past work [20].  

 

Shift+contour is an alternative method of pitch adaptation 

that maintains the contour of the original TTS but shifts it up 

or down to match the mean pitch of the speaker. While 

mirroring the shape of a partner’s pitch contour might 

strengthen automated measures of entrainment, there is the 

possibility of “over-adaptation” and of a mismatch between 



pitch contour and syntactic and semantic structure. Since 

entrainment on pitch mean has been found to be highly 

correlated with learning and rapport, above and beyond any 

other attributes of pitch, shift+contour only adapts the pitch. 

 

We introduce a third adaptation called shift+flatten.  This 

adaptation serves as a baseline in respect to the other two 

approaches. Still adapting on a single feature, pitch mean, we 

flatten the pitch contour of the TTS to the pitch mean of the 

user. The TTS output maps to the average pitch of the student. 

As this adaptation is intuitively the least realistic, it serves as 

a baseline comparison, in addition to the control, the original 

synthesized waveform with no adaptation on pitch.  

 

2.2 Hypotheses  

 

We hypothesize that the pitch adaptations will result in more 

rapport than the basic text-to-speech. Specifically, we 

hypothesize that mirror partner will produce more rapport 

than shift+contour or the basic text-to-speech baseline. The 

third adaptation, shift+flatten, will generate the least rapport.  

While we are interested in how rapport differs for different 

pitch adaptations, we want to ensure that the adaptations are 

perceived to be as natural as the original synthesized 

waveform. We hypothesize that mirror partner and 

shift+contour will not be significantly different from the 

baseline text-to-speech. We also hypothesize that 

shift+flatten will be significantly less natural.  

 

3. LEARNING COMPANION APPLICATION 

 

We implement a virtual learning companion to analyze the 

effect of the pitch adaptations. Students interact using spoken 

language with a virtual entraining agent, referred to as Quinn, 

and a web application. Quinn is present throughout the 

interaction on a tablet device. Quinn’s facial expressions are 

animated when speaking, and neutral otherwise. Underlying 

the web application is a collection of variable equation 

problems (i.e. “Solve 4x +3y = 80 for x”). The application 

presents each problem separately and includes steps to reach 

a solution. The problems are ordered in increasing order of 

difficulty. Quinn and an example of the web interface display 

for step one of a sample problem are found in Figure 2. 

 

 

Fig. 2: Quinn and an example of the web interface display for 

step one of a sample problem. 

Before teaching Quinn, students are given a sample problem 

to practice how to teach the problem. They are then 

introduced to Quinn and shown how to use the interface. To 

teach Quinn the problem, the student clicks on the 

microphone displayed on the page which enables real-time 

speech. They then proceed to walk Quinn verbally through 

the steps displayed on the screen.  The speech interaction is 

real-time, and the dialogue is recorded as the student speaks. 

After explaining each step, the students are instructed to 

pause, giving Quinn a chance to respond. A sample of the 

dialogue taken from the present study is given below; ‘Q’ 

represents Quinn and ‘S’ represents the student. 

 
S:   We will divide both sides by negative six 

Q:   Can you explain why we divide? 

S:   On the left hand side, we have negative 6y. We 

need   to have it equal just y so we need to get rid 

of the negative six. The easiest way is to divide. 

Q:   Thank you for explaining! I get it now. So we 

divide. Then what? 

S:   Then we have our final answer. 

 

3.1. Dialogue Interface 

 

To explore the effect of pitch adaptations on perceptions of 

naturalness and rapport, we build a dialogue interface which 

can manipulate the pitch of the text-to-speech output. We 

designed the system in a modular fashion so that the pitch 

adaptation module can be introduced independently into 

other dialogue systems. Speech recognition was performed 

Waveform 
control 

(no adaptation) 
mirror partner shift+contour shift+flatten 

 
 
 
 
           

 

   

Fig. 1: Spectrograms and pitch contours of the synthesized waveforms (original + three with pitch adaptation).  



using the Web Speech API specification 1 . The dialogue 

manager was developed using Artificial Intelligence Markup 

Language (AIML) developed by Richard Wallace [34]. 

AIML is an XML-compliant pattern matching language. We 

utilized the tool PandoraBots 2  to develop the AIML and 

generate responses. The text-to-speech output is produced 

with the Microsoft Speech API. The feature extraction and 

pitch adaptations3 are implemented using Praat [2]. The basic 

dialogue system design and technologies utilized are 

illustrated in Figure 3. The darker boxes indicate components 

of the pitch adaptation module. 

 

5. NATURALNESS & RAPPORT 

EVALUATION  

 

5.1 Spoken Dialogue Data Collection 

 

We collect 32 dialogues from four individuals. In each study, 

an undergraduate college student interacts with Quinn using 

the web application to teach Quinn how to solve variable 

equations. There are a total of eight math problems. For two 

problems, Quinn speaks with a non-transformed baseline 

speech. For the remaining six problems, Quinn alternates the 

type of adaptation for each problem. Two full problems are 

given for each type of adaptation; we collect each problem as 

a separate dialogue for a total of 8 dialogues per student. 

Statistics for the collected corpus are shown in Table 1.  

 

The gender of Quinn’s voice was chosen to match the gender 

of the student. The four case studies are gender balanced with 

two males and two females. The gender of the speaker drove 

the gender of Quinn’s voice. If the student was a female, then 

Quinn was female. If the student was male, Quinn was male. 

                                                 
1 https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html 
2 www.pandorabots.com 

 

Table 1: Dialogue and turn statistics for corpus 

 Mean Std. Dev. 

Dialogue length (min) 5.4 2.1 

Number of turns 30 10 

Turn length (sec) 10.8 4.6 

 

5.2 Amazon Mechanical Turk (AMT) Evaluation 

 

Taking the dialogue corpus collected in section 5.1, we 

manually select 40 exchanges from each of the student-Quinn 

dialogues. An exchange is considered to be two adjacent turns 

by different speakers (i.e. the student and Quinn). We select 

ten exchanges for the baseline text-to-speech and ten 

exchanges for each of the three types of adaptation, focusing 

on those exchanges with maximum coherency and minimal 

pausing or silence. The ten exchanges are evenly split 

between two scenarios. In the first scenario, Quinn is the first 

speaker in the exchange. In the second scenario, Quinn is the 

second speaker and is responding to the student. With a total 

of 40 exchanges per student, we utilized Amazon Mechanical 

Turk (AMT), a popular resource for crowdsourcing research 

tasks including annotations, ratings, transcripts, and 

subjective analysis [3]. Here we use AMT to obtain 10 

random, perceptual evaluations per exchange for a total of 

400 evaluations per student or 1600 evaluations.  

 

Through AMT, individuals, referred to as workers, were 

asked to listen to each exchange and answer a series of 

questions4 regarding the speakers. Each worker has access to 

evaluate 160 exchanges (40 per student). To evaluate 

naturalness, we use Mean Opinion Score or MOS [12]. With 

MOS, workers are asked to evaluate the quality of the voice 

on a Likert scale of 1-5, where 1 is very poor and 5 is 

3 Link to Praat script implementing the adaptations: 

http://www.public.asu.edu/~nlubold/Research/pitchadapt.praat 
4 http://www.public.asu.edu/~nlubold/Research/sampleHit.html 

Fig. 3: Dialogue system for Quinn. The darker boxes indicate components belonging to the pitch adaptation module. 



completely natural. Workers evaluated both the human 

speaker and Quinn on this scale.  

 

For evaluating rapport, we adopt a subset of questions from 

the rapport scale utilized by [9] and [19]. Workers are asked 

the following two questions about the relationship between 

the two speakers on a Likert scale of 1-5, where 1 is “not at 

all” and 5 is “a lot.”  In the questions below, Alex refers to 

the student and Quinn refers to the virtual agent. We selected 

these two questions because they target a shared feeling 

between the two speakers. To analyze rapport in section 5.3, 

the responses to these questions are averaged to create one 

rapport rating.  

 

1) Alex and Quinn understood each other 

2) There is a sense of closeness between Alex and Quinn 

 

In total, 174 workers provided evaluations of the audio. 12% 

or 21 workers rated 30% or more of the possible 160 

exchanges they had access to while 40% of the workers 

listened to and rated only one exchange. In analyzing the 

results below, we treat each rating as the unit of analysis.  

  

5.3 Results 

To analyze the effect of the pitch adaptations in terms of 

rapport and naturalness and evaluate our hypotheses, we first 

run a basic statistical analysis looking at the relationship 

between the type of adaptation, naturalness, and rapport.  

Doing a deeper review of the individual participants and their 

differences in ratings and adaptations, we find a connection 

between the social content of exchanges, the type of 

adaptation, and the degree of rapport perceived.  

 

5.3.1. Naturalness & Rapport 

 

Naturalness – We perform a one-way analysis of variance 

(ANOVA) with the type of adaptation (mirror partner, 

shift+contour, shift+flatten, and control) as a factor and 

naturalness as the dependent variable. Table 2 gives the 

means and standard deviations for each condition. The 

ANOVA analysis indicates that there are statistically 

significant differences among the types of adaptations, F(3, 

1599) = 19.9, p < 0.001. Tukey post hoc tests indicate that 

shift+contour was perceived as significantly more natural 

than either mirror partner (p < 0.001) or shift-flatten (p < 

0.001). We expected to find that mirror partner and 

shift+contour were as natural as the control. We find that the 

mirror partner is perceived to be much less natural, on par 

with shift+flatten. We also find that shift+contour is not 

significantly different from the control, where no adaptation 

is performed (p = 0.52). These results leads us to conclude 

that in pursing implementing an automatically entraining 

system, shift+contour, adapting pitch by shifting the TTS 

contour, is the most natural of the adaptations reviewed and 

is as natural as a non-manipulated text-to-speech output.  

Table 2: Means and standard deviations for naturalness on 

each pitch adaptation 

 Mean Std. Dev. 

control 2.22 1.36 

mirror partner 1.79 1.11 

shift+contour 2.39 1.33 

shift+flatten 1.85 1.15 

 

Rapport – To identify differences in how rapport is 

perceived for each of the pitch adaptations, we perform a one-

way ANOVA with adaptation type as a factor and rapport as 

the dependent variable. Table 3 gives the means and standard 

deviations. We find that there are statistically significant 

differences among the types of adaptations, F(3, 1599) = 

5.63, p < 0.001. Our hypothesis was that mirror partner would 

result in the most rapport, followed by shift+contour. 

Shift+flatten, we expected to be the lowest. Interestingly, we 

see that shift+contour is on par with mirror partner. Both are 

indicating higher, equivalent degrees of rapport over the 

control. Using Tukey post hoc tests to analyze which of the 

pitch adaptations are significantly different, we find that the 

shift+contour generates significantly higher perceptions of 

rapport than shift+flatten (p < 0.01). Differences between 

shift+contour, mirror partner, and control are not significant.  

Table 3: Means and standard deviations for rapport on each 

pitch adaptation 

 Mean Std. Dev. 

control 3.56 1.17 

mirror partner 3.73 1.07 

shift+contour 3.74 1.07 

shift+flatten 3.35 1.15 

 

Given that rapport may have been influenced by several 

aspects of the human-agent dialogue beyond pitch adaptation, 

we pursue in the next section a more in depth analysis of the 

exchanges, to identify whether there are any further 

conclusions we can draw regarding the social factors 

introduced by the pitch adaptations.   

 

5.3.2. Identifying Moderating Factors 

 

We examine the average ratings for each student who 

participated, as shown in Table 4. We find that for 3 of the 4 

students, the raters perceived more rapport in the exchanges 

where Quinn adapted by the shift+contour adaptation than in 

any other condition. Listening to these recordings, we 

identify an imbalance in terms of content spoken. In most 

scenarios, Quinn and the student engaged in conversation like 

the transcript in Section 5.1. In other cases, Quinn would 

introduce an off-topic statement. For example, 

 

Q: This is not very fun, are we almost done? 

S:  Math can be fun! But yeah…we're almost done 

 



There is support in past work that off-task social conversation 

increases rapport, particularly in educational dialogues [25]. 

Given the possibility the raters are considering the content of 

exchanges in their evaluations of rapport, we annotate the 

exchanges as either social (off-topic and not about the 

problem), or not social (on-topic and about the problem).  

 

In addition, we consider that we designed Quinn to entrain to 

the previous turn made by the student. In the exchanges rated, 

we counter balanced between exchanges where the rater 

would hear Quinn speak first and scenarios where the rater 

would hear the student speak first. In the latter, the turn to 

which Quinn is adapting is audible. We suspect the raters are 

perceiving more differences in the rapport produced when 

they can hear the speech to which Quinn is adapting. 

 

5.3.3 Statistical Analysis Incorporating Speaking Order and 

Social Context 

 

To explore the effect of the social exchanges versus non-

social exchanges as well as the order in which Quinn speaks, 

we run a 3-way ANOVA with rapport as the independent 

variable, including the type of adaptation, whether Quinn 

speaks first or second, and the social/not-social annotations 

as factors. The ANOVA analysis indicates statistically 

significant interactions between all combinations of factors 

except for the highest order interaction (all 3 factors). F-

scores and p-values are shown in Table 5.  

Table 5: 3-way ANOVA results with rapport as the 

dependent variable 

Factor F-Score p 
Type of Adaptation 6.8 < 0.001 
Social/Non-Social Exchange 1.3 0.25 
Quinn Speaks First/Second 3.6 0.06 
Adaptation x Social Exchange 6.1 < 0.001 
Adaptation x Quinn Speaking 7.5 < 0.001 
Social Exchange x Quinn Speaking 12.7 < 0.001 
3-Way Interaction 2.0 0.11 

 

Finding significant 2-way interactions for all combinations of 

factors, we run pairwise comparisons for further analysis. In 

social exchanges, the type of adaptation results in 

significantly different levels of rapport. When Quinn speaks 

second, shift+contour has significantly higher rapport than 

the control (p = 0.03) and shift+flatten (p < 0.001). The 

difference with mirror partner is nearly significant (p = 0.08). 

Pitch adaptation in non-social exchanges or when Quinn 

speaks first appear to have less of an effect. 

 

6. DISCUSSION & CONCLUSION 

 

In reviewing the results above, we find that in terms of 

rapport produced, differences between the pitch adaptations 

become the most notable when we incorporate social/non-

social annotations. We find that in social exchanges, shift-

contour produces significantly more rapport than the other 

adaptations and the control. This suggests that in future work, 

we should consider an adaptation such as shift-contour and 

that it may be prudent to pick and choose when an agent 

entrains. This is supported by prior work on rapport and 

entrainment which shows that off-task social conversation 

increases rapport and that humans entrain more in off-task, 

social dialogues [21].    

 

While we do find support for our hypothesis that shift+flatten 

produces the least rapport, our hypothesis regarding mirror 

partner producing more rapport than shift+contour or the 

control is not supported by the results. Listening to the 

exchanges, this result is mostly likely due to our original 

concern that the mirror partner adaptation results in 

mismatches between pitch contour and syntactic and 

semantic structure. This is supported by the finding that 

mirror partner is significantly less natural. Considering that 

mirror partner did receive very low naturalness scores, the 

rapport perceived for this adaptation is relatively high. This 

suggests that overcoming the issues with syntactic and 

semantic structure with a more nuanced adaptation 

accounting for contextual dependencies is necessary if we 

wish to explore mirror partner in the future. 

 

We conclude that adapting to the speaker does appear to be 

have an effect on naturalness and rapport and we find that 

shifting the contour by pitch mean is one form of adaptation 

we can accomplish in a manner which sounds as natural as 

current text-to-speech technologies while significantly 

increasing perceptions of rapport. Future work includes 

extending these findings and running a more extensive 

analysis focusing specifically on the effects of adaptation on 

pitch mean in regards to learning with a learning companion. 

We also intend to explore additional acoustic-prosodic 

features for adaptation and additional adaptation models 

based on other forms of entrainment, such as convergence, 

where individuals adapt over the course of a conversation.   

  Average Rapport Average Naturalness 

 gender control mirror s-contour s-flatten control mirror s-contour s-flatten 

Student 1 F 3.61 3.68 3.74 3.38 2.14 1.69 2.41 1.74 

Student 2 F 3.58 3.70 3.78 3.59 2.36 1.94 2.39 1.93 
Student 3 M 3.64 3.65 3.80 3.55 2.28 1.74 2.27 1.83 

Student 4 M 3.79 3.36 3.29 3.25 2.50 1.87 2.05 1.68 

Table 4: Descriptive statistics for each student; bold values indicate the highest rapport/naturalness score for that student  
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