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Abstract
The lack of ground truth labels is a significant challenge in the field of automatic recognition of emotion and affect. The
most common approach to acquiring affect labels is to ask a panel of listeners to rate a corpus of spoken utterances along
one or more dimensions of interest. In this paper, we describe a method that uses ambiguous handwritten digits for the
purpose of inducing natural uncertainty. Using a crowdsourcing approach, we quantify the legibility of each handwritten
digit. These images are integrated into visual stimuli that are used in a lab experiment for eliciting spontaneous spoken
utterances of varying levels of certainty. While we cannot measure a speaker’s actual internal level of certainty, our method
generates a novel and interesting approximation for internal certainty.
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1. Introduction

Although significant progress has been made in re-
cent years, the problem of automatically recognizing a
person’s emotional or cognitive state faces many chal-
lenges (Schuller et al., 2011). One of the main chal-
lenges is in obtaining ground truth labels for a per-
son’s emotional or cognitive state. The most common
approach to obtaining labels is to measure perceived
emotion, as annotated by one or more human judges.
This produces labels that are by definition subjective.
We treat them as a gold standard, understanding that
the subjectivity makes for a challenging classification
problem (Devillers et al., 2005).

In this paper, we present a method for inducing nat-
ural uncertainty in the context of collecting a corpus
of affective speech. We use a crowdsourcing approach
to identify a set of ambiguous handwritten digits and
to calibrate the difficulty of deciphering each digit.
The handwritten digit images are integrated into visual
stimuli that are used in a question-answering lab ex-
periment for eliciting spontaneous spoken answers of
varying levels of certainty. Details on the speech elic-
itation, the annotation of uncertainty, and the resulting
Harvard Uncertainty Speech Corpus are presented in
a separate paper (Pon-Barry et al., 2014).

In previous on recognizing uncertainty, there is little
control over how uncertain a person is. To obtain la-
bels for level of certainty, researchers have utilized
annotators to label perceived certainty (Litman and
Forbes-Riley, 2006). In our past work, we compared
perceived level of certainty to speaker self-reported

level of certainty. We found that self-reported cer-
tainty was often lower (rated as less certain) than per-
ceived certainty (Pon-Barry and Shieber, 2011). In
that work, we did not attempt to control the speaker’s
internal level of certainty. As a result, there was no
way to verify whether the perceived certainty or the
self-reported certainty was closer to his or her actual
certainty.

Our interest in improving uncertainty detection is mo-
tivated by applications for personalized learning in
tutorial dialogue systems, where we are most inter-
ested in knowing a student’s internal level of cer-
tainty. There is evidence indicating that adapting to
uncertainty can improve learning, but also that accu-
rately detecting uncertainty is a bottleneck for fully-
automated adaptive systems (Forbes-Riley and Lit-
man, 2011). Skilled human tutors can gauge a stu-
dent’s level of certainty and tailor the dialogue appro-
priately. For example, if a student feels certain but
gives an incorrect answer, it may be due to a miscon-
ception. Studies of learning in human tutorial dialogue
suggest a strong connection between impasses (such
as misconceptions) and student learning, to the point
of proposing that cognitive disequilibrium is a neces-
sary precursor to deep learning (VanLehn et al., 2003;
Craig et al., 2004).

We describe in this paper a method for approximat-
ing internal certainty based upon crowdsourced judge-
ments of handwritten image legibility. We create
speech elicitation stimuli around these images that en-
able the creation of a speech corpus with three kinds of
certainty labels: approximate internal certainty, self-



reported certainty, and perceived certainty (Pon-Barry
et al., 2014).

2. Legibility Scores for Handwritten Digits

Here, we discuss our procedure for obtaining the set
of handwritten digit images and describe a human
computation approach to quantifying the legibility of
each image. We make use of the MNIST database of
handwritten digit images (LeCun et al., 1998). The
database contains 10,000 handwritten digit images
from the United States Postal Service.

Our process of selecting handwritten digit images and
generating legibility scores has three steps.

1. Identify 400 candidate images (out of all 10,000
images) that may have low legibility.

2. Generate legibility scores for these 400 images
via crowdsourcing.

3. Narrow down set of 400 images to identify 50
images with varying legibility scores.

The following sections describe these steps in detail.

2.1. Identify Candidate Images

In the first step, we use an existing support vector ma-
chine classifier (Maji and Malik, 2009) to classify all
the images in the MNIST database. This classifier out-
puts a confidence measure along with the most likely
label. The 400 images with the lowest confidence
measures are used in the crowdsourcing experiment.

2.2. Crowdsourcing Legibility Scores

In the second step, we generate legibility scores for
these 400 images by crowdsourcing human labels on
Amazon’s Mechanical Turk. Mechanical Turk is an
online labor market that facilitates the assignment of
human workers to quick and discrete human intelli-
gence tasks, or HITs (Paolacci et al., 2010; Mason
and Suri, 2011). Our crowdsourcing approach enables
each image to be labeled by 100 humans in a short
amount of time.

We divide the digit images into twenty sections so that
each HIT consists of 20 images. We instruct workers
to identify each digit using a drop-down menu. Fig-
ure 1 shows a screenshot of the Mechanical Turk HIT.
Pon-Barry (2013) includes the full instructions and ex-
periment settings.

We generate a legibility score for each image based on
the entropy of the human label distribution, a measure

Instructions!
For each of the handwritten digit images below, identify the digit using 
the drop-down menu. Even if you are unsure, select the digit that the 
image most closely resembles. We will compare your selections (for 

certain images) with the selections of other workers to ensure quality.

Figure 1: Screenshot of the Mechanical Turk HIT for
handwritten digit legibility scores.

of the uncertainty of a random variable X taking on
values x1, . . . xN defined by,

H(X) = −
N∑
i=1

P (xi)logP (xi) .

Using the labels collected on Mechanical Turk, we
can compute the maximum likelihood estimate for the
probability P (xi). We take the legibility score to be
1−H(X).

Thus, legibility scores fall in the range [0,1]. A legi-
bility score of 1 (entropy of 0) indicates high legibility
(all 100 people choose the same label).

Table 1: Handwritten digits of varying legibility. The
individual label frequencies and legibility scores are
shown in the columns below each image.

Crowdsourced Label Frequencies

Label

‘0’ - - - - 2
‘1’ - - - 5 34
‘2’ - 22 - - 9
‘3’ - - - - 20
‘4’ - - 69 - 4
‘5’ 100 - - - 15
‘6’ - 1 31 - 3
‘7’ - 77 - 58 5
‘8’ - - - - 8
‘9’ - - - 37 -

Entropy 0.00 0.25 0.27 0.36 0.81
Legibility Score 1.00 0.75 0.73 0.64 0.19



Table 2: The distribution of legibility scores for the
400 images that were classified by human workers on
Mechanical Turk.

Legibility Score s Number of Images

0.1 < s < 0.2 1
0.3 < s < 0.4 1
0.4 < s < 0.5 3
0.5 < s < 0.6 2
0.6 < s < 0.7 8
0.7 < s < 0.8 26
0.8 < s < 0.9 33
0.9 < s < 1 181

s = 1 146

Table 1 shows five digits of varying legibility, the fre-
quencies of the human labels, and the associated en-
tropy values and legibility scores. Table 2 shows the
frequency of legibility scores for the 400 images that
were classified by workers on Mechanical Turk.

Ensuring Quality. Preventing malicious behavior
(e.g., artificial bots designed to complete all the HITs
in a batch) is a challenge for researchers collect-
ing data on Mechanical Turk (Ipeirotis et al., 2010;
Callison-Burch and Dredze, 2010). We take two mea-
sures to ensure worker quality. First, we include a
question, such as “What is 4+2?”, to verify that the
worker is a real person. Second, we include two con-
trol images in every HIT. Before paying workers, we
verify that they correctly identify the control images.

Experiment Running Time. Our Mechanical Turk
experiment was staged in two rounds, with 10 unique
HITs per round. Round 1 took 126 hours (about five
days) to complete with an average time/HIT of 72 sec-
onds. Round 2 took 33 hours (about one and a half
days) to complete, with an average time/HIT of 61
seconds.1

2.3. Narrow Down Set of Images

In the final step, we identify 50 images to use in the
speech elicitation stimuli based on the entropies of
the human-label distributions. We drew uniformly (as
uniformly as possible) from the binned range of legi-
bility scores. The resulting set of 50 images is shown
in Figure 2. The images are displayed from easiest to

1The two experiment rounds were identical in all ways
except for the images themselves. We speculate that Round
2 took less time than Round 1 due to the time of posting,
i.e., weekday vs. weekend.

hardest (low entropy to high entropy) starting from the
top-left and moving left-to-right across the rows.

Figure 2: Handwritten digit images of varying legibil-
ity, ordered from easiest to hardest.

2.4. Image Ambiguity

When generating legibility scores, we assume that
ambiguous images will appear ambiguous to nearly
all people. To test this, we conducted a second ex-
periment on Mechanical Turk that asked 100 people
whether they found an image to be ambiguous or un-
ambiguous. Figure 3 shows the fraction of people
who rated an image as unambiguous versus the im-
age’s legibility score. The distribution confirms our
hypothesis. Images found unambiguous by a majority
of people all have legibility scores in the upper range
(greater than 0.75).

Figure 3: For each image, the fraction of people who
judged it to be unambiguous vs. its legibility score.

3. Integrating Images into Stimuli

The materials for eliciting speech are designed so that
participants utter a specific digit aloud in the context
of answering a question. The handwritten digit im-
ages are embedded in an illustration of a train route



connecting two U.S. cities. The handwritten digit in-
dicates the train number. An example train route illus-
tration is shown in Figure 4. The handwritten digit on
the train was identified as a ‘7’ by 76 people, as a ‘2’
by 22 people, and as a ‘6’ by 2 people.

Figure 4: Speech elicitation stimulus integrating an
ambiguous handwritten digit indicating the train num-
ber.

At the start of the data collection experiment, partic-
ipants read a task scenario explaining why they are
deciphering handwritten train conductor notes and an-
swering questions about them. A question that re-
quires reading the train number is asked and partici-
pants respond spontaneously. For example:

Q: Which train leaves Los Angeles and at what time
does it leave?

A: Train number seven leaves Los Angeles at 1:27.

Although the question responses are spontaneous,
word choice is influenced by a warm-up task where
participants are given answers to read aloud. This lets
us have indirect influence over the length and lexical
content of the utterances, which aids future analysis of
utterance-level and word-level prosody.

The key point is that we can assign each image a leg-
ibility score, based on the crowdsourced judgements.
We assume that when participants are trying to read
the digits, their internal certainty is proportional to the
image’s legibility score. We compare two kinds of cer-
tainty labels to these legibility scores: labels from the
speaker’s perspective and labels from the hearer’s per-
spective. The former, labels from the speaker’s per-
spective, are more strongly correlated with the legibil-
ity scores (Pon-Barry et al., 2014).

4. Harvard Uncertainty Speech Corpus

The results of our Mechanical Turk experiment and
speech elicitation stimuli are available to the research
community through the Dataverse Network.2 At this
site, researchers can also access the level of certainty
annotations, acoustic feature vector data, and request
access to the audio data. Details on the Harvard Un-
certainty Speech Corpus can be found in previous and
concurrent published works (Pon-Barry and Shieber,
2011; Pon-Barry et al., 2014).

5. Discussion and Conclusion

In this paper, we introduced a novel method for
approximating internal certainty based upon crowd-
sourced judgements of handwritten image legibility.
We collected affective speech in a controlled exper-
iment in a laboratory setting that utilized these im-
ages. This allowed us to analyze subtle differences in
prosodic expressiveness to better understand individ-
ual speaking styles (Pon-Barry and Nelakurthi, 2014).
However, there are limitations associated with speech
collected in a lab. Integrating these images into new
experiments to collect spontaneous affective speech in
real-world learning and tutorial environments is an ex-
citing avenue for future research.

This work addresses an issue central to human lan-
guage technologies and affect recognition: what are
the best practices with respect to measuring speaker
affect and speaker state? We have presented a method
for identifying ambiguous handwritten digits for the
purpose of inducing natural uncertainty and we used
crowdsourcing to generate a legibility score for each
handwritten digit. While crowdsourcing has been used
as a way of obtaining labels for a given audio or video
segment, we claim that it also has utility in design-
ing stimuli for inducing natural affect. Our work is
done in the context of examining uncertainty, though
the method is applicable to other forms of affect as
well, ones where the source of the affectual state is
manipulable.
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