
Contextualizing Learning in a Reflective Conversational Tutor

Heather Pon-Barry, Brady Clark, Karl Schultz, Elizabeth Owen Bratt and Stanley Peters
Stanford University

Center for the Study of Language and Information
{ponbarry, bzack, schultzk, ebratt, peters}@csli.stanford.edu

Abstract
Contextualizing learning in an intelligent tutoring system
is difficult for many reasons. Goals such as presenting
material in an understandable manner, minimizing
confusion and frustration, and helping the student reason
about their actions all need to be balanced. Previous
research has shown reflective discussions (with human
tutors) occurring after problem-solving to be effective in
helping students reason about their own actions [14].
However, leading a reflective discussion makes it difficult
to present information in an understandable manner, and
without contextualization it is easy to create student
confusion and frustration. This raises the question: how
can intelligent tutoring systems effectively contextualize
learning in a reflective discussion? In this paper we
describe the tutorial architecture of SCoT, a Spoken
Conversational Tutor that uses flexible, adaptive planning
and multi-modal task modeling to support the
contextualization of learning in reflective dialogues.

1. Introduction

One-on-one human tutoring has been established as a
highly effective mode of instruction. Studies have shown
that students interacting with expert human tutors
received test scores 2.0 standard deviations above
students in an ordinary classroom setting [3]. In an
attempt to approach the effectiveness of human tutors,
many developers of intelligent tutoring systems have
begun incorporating natural language dialogue into their
tutorial systems. While much of the work has focused on
using natural language dialogue during the problem-
solving session [9, 10, 11], very little work has focused on
using reflective dialogue after problem-solving. Many
challenges arise when leading reflective discussions after
problem-solving that do not come up when leading
discussions during problem-solving. For example,
students may have a hard time remembering details from
the problem-solving session, particularly if the session
was complicated. This raises the question: how can an
intelligent tutoring system effectively contextualize
learning in a reflective discussion?

A reflective, conversational tutor must be able to
contextualize information from the problem-solving

session in order to successfully talk about past events and
to lead a discussion that addresses a student's “trouble
spots”. Furthermore, the tutor must use the student's
behavior during the dialogue to guide the manner in
which new information is presented and to revise planned
activities. These issues have motivated the design choices
made in our development of the SCoT tutoring system. In
this paper, we present the architecture of SCoT's tutorial
component and explain how it allows SCoT to facilitate
contextualized, reflective, tutorial dialogue.

2. Effectiveness of Reflective Tutorial
Dialogue

Integrating new information with existing knowledge
is a fundamental characteristic of learning. Past research
has shown that human tutors can ease this integration
process by eliciting self-explanations from the student [5].
Some dialogue-based tutoring systems have taken the
approach of eliciting natural language explanations during
problem solving [2], but recent studies have provided
evidence suggesting that dialogues occurring after
problem-solving are especially conducive to student
explanations. For example, studies comparing dialogues
during problem-solving to reflective dialogues after
problem-solving have shown that students are more likely
to ask questions and to discuss their reasoning processes
in the reflective dialogues [13], and that the reflective
dialogues more frequently involved multi-step
interchanges between the tutor and the student [16]. In
addition, a recent study on the instructional role of
reflective dialogue [14] found that students who were
asked reflective questions by the tutor learned more (as
measured by pre-test and post-test scores) than those
receiving no reflection questions.

These results suggest that an intelligent tutoring
system supporting reflective dialogue has the potential to
be very effective. However, in order to allow the student
to integrate new information during a post-session
discussion, a reflective tutor must have the capability to
contextualize the information it presents. We believe that
multi-modal dialogue-based interaction, carried out by a
flexible and adaptive planning agent, can aid in this
process of contextualization.

3. Overview of SCoT

Our approach is based on the assumption that the
activity of tutoring is a joint activity (in the same way that
moving a desk is a joint activity) where the content of the
dialogue (language and other communicative signals) is
driven by the activity at hand [6]. Following this
hypothesis, SCoT’s architecture separates conversational
intelligence (e.g. turn management, use of discourse
markers) from the activity that the dialogue accomplishes
(in this case, reflective tutoring). This separation provides
for a clearer representation of how and why the nature of
a task affects the dialogue.

SCoT-DC, the current instantiation of our tutoring
system, is applied to the domain of shipboard damage
control. Shipboard damage control refers to the task of
containing the effects of fires, floods, and other critical
events that can occur aboard Navy vessels. Students carry
out a reflective discussion with SCoT-DC after a
problem-solving session with DC-Train [4], a fast-paced,
real-time, multimedia training environment for damage
control. The fact that problem-solving in DC-Train must
occur in real-time makes reflective tutorial dialogue more
appropriate than tutorial dialogue during the simulation.
Because problems co-occur and demand immediate
attention, contextualization becomes more difficult.

SCoT is developed within the Architecture for
Conversational Intelligence [15], a general purpose
architecture which supports multi-modal, mixed-initiative
dialogue. SCoT is composed of four separate
components: a dialogue manager, a knowledge
representation, a student model, and a tutor. These four
components are described in sections 3.1 through 3.4.

3.1 Dialogue Manager

The dialogue manager handles aspects of

conversational intelligence, helping the tutor interpret
student utterances in context. It contains multiple
dynamically updated components—the two main ones are
the dialogue move tree, a structured history of dialogue
moves, and the activity tree (see Figure 3), a hierarchical
representation of the past, current, and planned activities
initiated by either the tutor or the student. For SCoT,
each activity initiated by the tutor corresponds to a
tutorial goal; the decompositions of these goals are
specified by activity recipes contained in the recipe
library (see section 4.2).

3.2 Knowledge Representation

The knowledge representation provides SCoT a

domain-general interface to domain-specific information.
In accordance with production-system theories of
cognition [1], knowledge specifying causal relationships

between events on the ship and proper responses to
shipboard crises is encoded in a set of production rules. A
knowledge reasoner operates over this production system
to provide the tutor with procedural explanations of
domain-specific actions, and to provide the student model
(see section 3.3) with information about the problem-
solving session.

3.3 Student Model

The SCoT student model uses a Bayesian network to

characterize the causal connections between pieces of
target domain knowledge (e.g. a rule for when to perform
some action) and observable student actions. Every piece
of target domain knowledge has an associated probability
representing the system's best guess that the student
knows the particular piece of knowledge. This Bayesian
framework was chosen because the task of inferring a
student's cognitive state from their responses to questions
involves a great deal of uncertainty [7]. The student
model is dynamically updated during both the problem
solving session and the dialogue.

3.4 Tutor

The tutor consists of two components: one for

planning and executing tutorial activities, and one that
contains recipes specifying how to decompose these
activities into other tutorial activities or into low-level
actions. These components are described in detail in
section 4.

4. SCoT’s Tutorial Architecture

One aspect of leading a reflective discussion is

determining how to contextualize information in the most
effective manner. Students will likely provide evidence
during the dialogue that alters the tutor’s original
assessment as well as their plan for how to contextualize
information. This emphasizes the need for a planning
architecture that allows for revisions to the original
dialogue plan. The ability to plan and carry out a flexible
and coherent dialogue has been a large motivational factor
influencing the design of SCoT's tutor component. We
have chosen an approach that separates tutorial
knowledge (i.e. how to lead a tutorial dialogue) from all
other sources of information (e.g. domain knowledge,
knowledge of the student). The tutorial knowledge is
divided between a three-tier planning and execution
system (see section 4.1) and a recipe library (see section
4.2). The three-tier approach to planning and execution
was originally developed for artificially intelligent robots
and has recently been deployed in tutorial dialogue
systems [18]. By separating high-level planning from
plan-revision and plan-execution, it allows the tutor to

Figure 1. Interaction between SCoT tutor component & information state.

lead a flexible dialogue and to continually re-assess
information from external knowledge sources in order to
appropriately contextualize the information it presents.
Figure 1 depicts this separation of knowledge.

4.1 Planning and Execution System

The Information State encapsulates all external

knowledge sources. It provides the tutor with
information such as the current context of the dialogue, or
a history of the student's interactions with SCoT. By
separating tutorial knowledge from other knowledge
sources, we not only create a tutor that is reusable in other
domains [17], we also provide a clean and consistent way
for each component of the tutor to access information
pertaining to the current context. Note that Figure 1 only
depicts information flow with respect to the tutor—the
components of the information state are also updated by
one another, and by other components of SCoT.

The deliberator makes high-level plans. Before the
start of a dialogue, the deliberator uses information
gathered from the information state to select a high-level
tutorial strategy from the recipe library and place it on the
activity tree. During the dialogue, the deliberator can be
called on by the sequencer to repair plans (i.e. add or
remove planned activities from the activity tree).

The sequencer handles plan-revision. Before
executing a planned activity, the sequencer checks the
current context (from the information state) to make sure
that the goals of the planned activity are still relevant, and
reorders low-level activities when necessary.

The controller handles low-level input to and output
from the tutorial component. It initiates the execution of
tutorial activities, and handles the classification of student
responses (i.e. it interprets logical representations of their
utterances as well as actions performed in the GUI).

4.2 Recipe Library

An activity recipe can be thought of as a tutorial goal

and a plan for how the tutor will achieve the goal. The
recipe library contains a large body of both high-level and
low-level activity recipes. The recipes are written in a
scripted language [12] which allows for automatic
translation into system activities—the same activities that
are stored in the activity tree (each node on the activity
tree corresponds to one tutorial goal). Consider the
following excerpt from a sample dialogue constructed to
highlight the capabilities of SCoT:

1 Tutor: OK, in this session there was a fire here, in the
supply department storeroom.

2 Tutor: You had difficulty controlling this fire, so we
should review the various areas of damage
control that were covered in this problem.

3 Tutor: After the fire alarm sounded, you sent repair 3
to set fire boundaries. However, there is
something else you should have done before
setting fire boundaries. Can you tell me what
that is?

4 Student: I'm not sure.
5 Tutor: Well, the supply department storeroom is an

unmanned space. When the alarm sounds, are
you certain that there really is a fire?

6 Student: No, I guess not.
7 Tutor: Can you tell me now what you forgot to do?
8 Student: I should have sent investigators to verify the

alarm.
9 Tutor: Yes, that's exactly right.

Figure 2. Sample dialogue with SCoT

This dialogue illustrates one tutorial approach to

contextualizing the information being presented. The
recipe library contains many more, and can easily be
augmented. The dialogue excerpt above corresponds to
the tutorial goal discuss_problem_solving_sequence.
After the tutor puts this activity on the activity tree, the
system executes the recipe which causes the activity to be
expanded into four more-specific activities (i.e. sub-
goals). The activity tree in Figure 3 shows this
decomposition. Note that, in Figure 3 the activity
situate_problem_context has also been expanded, but the

other three sub-goals are not yet expanded—this diagram
represents the state of the activity tree after turn (1) and
before turn (2) in the dialogue from Figure 2.

Figure 3. Sample Activity Tree.

The tutorial goals (activities) in Figure 3 give rise to a

contextualized dialogue in the following ways:
 In turn (1) of the dialogue, it is the tutor's first mention

of this problem, so the situate_problem_context activity
is added to the activity tree, and the tutor describes the
type of problem while highlighting its location in the
ship display (regions are colored according to the type
of crisis, e.g. red for fire, grey for smoke).

 In turn (2) of the dialogue, the tutor tells the student
why it chose to review this sequence so that the student
will understand the tutor’s subsequent turns. This
corresponds to the activity explain_review_sequence.

 In turn (3) of the dialogue, the tutor contextualizes the
problem by reminding the student what they did (they
sent repair 3 to set fire boundaries). This corresponds
to the activity state_correct_steps.

 Also in turn (3), the tutor asks the student what step of
the sequence they omitted. Since the student does not
provide the information the tutor is looking for (in turn
(4)), the tutor provides further information about the
context (turn (5)), and reasks the question (turn (7)).
This interaction is specified in the decomposition of the
elicit_missing_steps activity (not shown in Figure 3).

Figure 4 shows simplified recipes for two tutorial

activities: discuss_problem_solving_sequence and
situate_problem_context. Each recipe contains three
sections: parameters, information to monitor, and body.
Parameters specify what information is passed in to the
recipe, InformationToMonitor specifies which parts of
the information state are used in determining how to
execute the recipe, and Body specifies how to decompose
the activity into other activities and low-level actions.
For example, in the first recipe shown in Figure 4, the
tutorial goal discuss_problem_solving_sequence is
decomposed into either 3 or 4 subgoals (depending on
whether the problem has already been discussed). When

this recipe is executed, the 4 subgoals are added to the
activity tree, and the tutor begins to process their
respective recipes.

Activity <discuss_problem_solving_sequence> {

 Parameters {
 currentProblem;
 }

 InformationToMonitor {
 currentProblem.alreadyDiscussed;
 }

 Body {
 if (!currentProblem.alreadyDiscussed) {
 situate_problem_context;
 }
 explain_review_sequence;
 state_correct_steps;
 elicit_missing_steps;
 }
}

Activity <situate_problem_context> {
 Parameters {}

 InformationMonitored {
 currentProblem.type;
 currentProblem.location;
 }

 Body {
 highlight_region(currentProblem.location);
 state_type_and_location(currentProblem.type,
 currentProblem.location);
 }
}

Figure 4. Two sample activity recipes.

Other approaches to contextualization include
discussing an analogous hypothetical situation, or
exhaustively recreating the details of a problem-solving
session. The activity recipe scripting language provides a
framework for expressing these tutorial tactics and
strategies for contextualization. Furthermore, the
modular nature of the recipes makes it easy to test to the
effect of different pedagogical and conversational
approaches to contextualization.

4.3 Multi-modal Interaction

By coordinating spoken and visual output, the tutor
has greater flexibility in how it chooses to contextualize
information. Both the tutor and the student can
interactively perform actions in an area of the graphical
user interface called the common workspace. In the
current version of SCoT-DC, the common workspace
consists of a 3D representation of the ship which allows
either party to zoom in or out, and to select (“point to”)
compartments, regions, and bulkheads (lateral walls of a
ship). In addition, the common workspace is currently

being expanded to incorporate symbolic representations
of the changing states of various crises on the ship.
 The tutor contextualizes the problems being
discussed by highlighting compartments in certain colors
(e.g. red for fire, grey for smoke) to indicate the type and
location the crises. An example of this coordination can
be seen in the way the activity situate_problem_context
(see Figure 3) is decomposed into both visual and spoken
actions. Because the dialogue in SCoT is spoken rather
than typed, it has the unique ability to also coordinate the
student’s speech and gesture. This is an area we are
currently working on, and once implemented, we hope to
support interchanges such as:

Tutor: If there is a fire here [highlights compartment], in

compartment 1-126-0-A, which bulkheads should
you set fire boundaries on?

Student: I should set primary boundaries here [selects
bulkhead], and here [selects other bulkhead].

Studies investigating how people combine speech

with gestures and diagrams have suggested that
participants construct shared models of what they are
discussing in order to facilitate communication of
difficult content [8]. Allowing the student to explain their
reasoning while pointing to objects in the workspace
creates a common mode of communication between the
student and the tutor, and makes it easier for the tutor to
know if the student is contextualizing the problem
appropriately. This leads us to believe that multi-modal
interaction is extremely helpful in contextualizing
reflective tutorial discussions.

5. Conclusion

In this paper, we presented the architecture of SCoT's
tutor component and described how it uses multi-modal
interaction to support the contextualization of learning in
a reflective tutorial discussion. By separating tutorial
knowledge from domain knowledge and writing activity
recipes in a modular way, we have a framework that
makes it easy to revise plans as the information state
changes and appropriately contextualize the conversation
through dialogue and through gesture. We are continuing
development efforts to expand the recipe library to
address several aspects of conducting reflective tutorial
dialogues. One focus is to support self-explanation, in
which students use free-form language to explain their
own reasoning. A second focus is to round out further
tactics for contextualization, and experimentally evaluate
their comparative effects.

Acknowledgments
This work is supported by the Department of the Navy under
research grant N000140010660. Further information is available
at http://www-csli.stanford.edu/semlab/muri.

References
[1] Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ:
Erlbaum.
[2] Aleven, V., Koedinger, K., & Popescu, O. (2003). A
tutorial dialog system to support self-explanation: Evaluation
and open questions. In Proceedings of the 11th International
Conference on Artificial Intelligence in Education, AI-ED 2003.
[3] Bloom, B. S. (1984). The 2 sigma problem: The search for
methods of group instruction as effective one-on-one tutoring.
Educational Researcher, 13, 4-16.
[4] Bulitko, V., & Wilkins., D. C. (1999). Automated
instructor assistant for ship damage control. In Proceedings of
AAAI-99.
[5] Chi, M.T.H., de Leeuw, N., Chiu, M., LaVancher, C.
(1994). Eliciting self-explanations improves understanding.
Cognitive Science, 18, 439-477.
[6] Clark, H. (1996). Using Language. Cambridge: University
Press.
[7] Conati, C.,Gertner, A., & VanLehn, K. (2002). Using
bayesian networks to manage uncertainty in student modeling.
User Modeling and User-Adapted Interaction, 12, 371-417.
[8] Engle, R., Reiner, C., & Lin, W. (In prep.). Establishing
mutual understanding by locating models in interactional space.
Manuscript in preparation for Discourse Processes.
[9] Evens, M., Brandle, S., Chang, R., Freedman, R., et al.
(2001). CIRCSIM-Tutor: An Intelligent Tutoring System Using
Natural Language Dialogue. In Proceedings of the Twelfth
Midwest AI and Cognitive Science Conference, MAICS 2001.
[10] Freedman, R. (1999) Atlas: A Plan Manager for Mixed-
Initiative, Multimodal Dialogue. AAAI-99 Workshop on Mixed-
Initiative Intelligence.
[11] Graesser, A., Wiemer-Hastings, K., Wiemer-Hastings, P.,
Kreuz, R., & the Tutoring Research Group. (2000). AutoTutor:
a simulation of a human tutor. Journal of Cognitive Systems
Research, 1, 35-51.
[12] Gruenstein, A. (2002). Conversational Interfaces: A
Domain-Independent Architecture for Task-Oriented Dialogues.
Unpublished M.S. Thesis, Stanford University.
[13] Katz, S., O'Donnell, G., & Kay, H. (2000). An approach
to analyzing the the role and structure of reflective dialogue.
International Journal of Artificial Intelligence and Education,
11, 320-333.
[14] Katz, S., Allbritton, D., & Connelly, J. (2003). Going
beyond the problem given: How human tutors use post-solution
discussions to support transfer. International Journal of
Artificial Intelligence and Education, 13, 79-116.
[15] Lemon, O., Gruenstein, A., & Peters, S. (2002).
Collaborative activities and multitasking in dialogue systems.
In C. Gardent (Ed.), Traitement Automatique des Langues (TAL,
special issue on dialogue), 43(2), 131-154.
[16] Moore, J.D. (1996). Making computer tutors more like
humans. International Journal of Artificial Intelligence in
Education, 7(2), 181-214.
[17] Schultz, K., Bratt, E., Clark, B., Peters, S., Pon-Barry, H.,
& Treeratpituk, P. (2003). A Scalable, Reusable Spoken
Conversational Tutor: SCoT. In Proceedings of the AIED 2003
Workshop on Tutorial Dialogue Systems: With a View Towards
the Classroom.
[18] Zinn, C., Moore, J., & Core, M. (2002). A 3-tier planning
architecture for managing tutorial dialogue. In Proceedings of
the 6th International Conference, ITS 2002, 574-584.

