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Abstract 
Contextualizing learning in an intelligent tutoring system 
is difficult for many reasons.  Goals such as presenting 
material in an understandable manner, minimizing 
confusion and frustration, and helping the student reason 
about their actions all need to be balanced.  Previous 
research has shown reflective discussions (with human 
tutors) occurring after problem-solving to be effective in 
helping students reason about their own actions [14].  
However, leading a reflective discussion makes it difficult 
to present information in an understandable manner, and 
without contextualization it is easy to create student 
confusion and frustration.  This raises the question: how 
can intelligent tutoring systems effectively contextualize 
learning in a reflective discussion?  In this paper we 
describe the tutorial architecture of SCoT, a Spoken 
Conversational Tutor that uses flexible, adaptive planning 
and multi-modal task modeling to support the 
contextualization of learning in reflective dialogues.  
 
 
1. Introduction 
 

One-on-one human tutoring has been established as a 
highly effective mode of instruction.  Studies have shown 
that students interacting with expert human tutors 
received test scores 2.0 standard deviations above 
students in an ordinary classroom setting [3].  In an 
attempt to approach the effectiveness of human tutors, 
many developers of intelligent tutoring systems have 
begun incorporating natural language dialogue into their 
tutorial systems.  While much of the work has focused on 
using natural language dialogue during the problem-
solving session [9, 10, 11], very little work has focused on 
using reflective dialogue after problem-solving.  Many 
challenges arise when leading reflective discussions after 
problem-solving that do not come up when leading 
discussions during problem-solving.  For example, 
students may have a hard time remembering details from 
the problem-solving session, particularly if the session 
was complicated.  This raises the question: how can an 
intelligent tutoring system effectively contextualize 
learning in a reflective discussion?  

A reflective, conversational tutor must be able to 
contextualize information from the problem-solving 

session in order to successfully talk about past events and 
to lead a discussion that addresses a student's “trouble 
spots”.  Furthermore, the tutor must use the student's 
behavior during the dialogue to guide the manner in 
which new information is presented and to revise planned 
activities.  These issues have motivated the design choices 
made in our development of the SCoT tutoring system.  In 
this paper, we present the architecture of SCoT's tutorial 
component and explain how it allows SCoT to facilitate 
contextualized, reflective, tutorial dialogue.   
 
2. Effectiveness of Reflective Tutorial 
Dialogue 
 

Integrating new information with existing knowledge 
is a fundamental characteristic of learning.  Past research 
has shown that human tutors can ease this integration 
process by eliciting self-explanations from the student [5].  
Some dialogue-based tutoring systems have taken the 
approach of eliciting natural language explanations during 
problem solving [2], but recent studies have provided 
evidence suggesting that dialogues occurring after 
problem-solving are especially conducive to student 
explanations.  For example, studies comparing dialogues 
during problem-solving to reflective dialogues after 
problem-solving have shown that students are more likely 
to ask questions and to discuss their reasoning processes 
in the reflective dialogues [13], and that the reflective 
dialogues more frequently involved multi-step 
interchanges between the tutor and the student [16].  In 
addition, a recent study on the instructional role of 
reflective dialogue [14] found that students who were 
asked reflective questions by the tutor learned more (as 
measured by pre-test and post-test scores) than those 
receiving no reflection questions.   

These results suggest that an intelligent tutoring 
system supporting reflective dialogue has the potential to 
be very effective.  However, in order to allow the student 
to integrate new information during a post-session 
discussion, a reflective tutor must have the capability to 
contextualize the information it presents.  We believe that 
multi-modal dialogue-based interaction, carried out by a 
flexible and adaptive planning agent, can aid in this 
process of contextualization. 



3. Overview of SCoT 
 

Our approach is based on the assumption that the 
activity of tutoring is a joint activity (in the same way that 
moving a desk is a joint activity) where the content of the 
dialogue (language and other communicative signals) is 
driven by the activity at hand [6].  Following this 
hypothesis, SCoT’s architecture separates conversational 
intelligence (e.g. turn management, use of discourse 
markers) from the activity that the dialogue accomplishes 
(in this case, reflective tutoring).  This separation provides 
for a clearer representation of how and why the nature of 
a task affects the dialogue.   

SCoT-DC, the current instantiation of our tutoring 
system, is applied to the domain of shipboard damage 
control.  Shipboard damage control refers to the task of 
containing the effects of fires, floods, and other critical 
events that can occur aboard Navy vessels.  Students carry 
out a reflective discussion with SCoT-DC after a 
problem-solving session with DC-Train [4], a fast-paced, 
real-time, multimedia training environment for damage 
control.  The fact that problem-solving in DC-Train must 
occur in real-time makes reflective tutorial dialogue more 
appropriate than tutorial dialogue during the simulation.  
Because problems co-occur and demand immediate 
attention, contextualization becomes more difficult. 

SCoT is developed within the Architecture for 
Conversational Intelligence [15], a general purpose 
architecture which supports multi-modal, mixed-initiative 
dialogue.  SCoT is composed of four separate  
components: a dialogue manager, a knowledge 
representation, a student model, and a tutor.  These four 
components are described in sections 3.1 through 3.4.   
 
3.1 Dialogue Manager 

 
The dialogue manager handles aspects of 

conversational intelligence, helping the tutor interpret 
student utterances in context.  It contains multiple 
dynamically updated components—the two main ones are 
the dialogue move tree, a structured history of dialogue 
moves, and the activity tree (see Figure 3), a hierarchical 
representation of the past, current, and planned activities 
initiated by either the tutor or the student.  For SCoT, 
each activity initiated by the tutor corresponds to a 
tutorial goal; the decompositions of these goals are 
specified by activity recipes contained in the recipe 
library (see section 4.2). 
 
3.2 Knowledge Representation 

 
The knowledge representation provides SCoT a 

domain-general interface to domain-specific information.  
In accordance with production-system theories of 
cognition [1], knowledge specifying causal relationships 

between events on the ship and proper responses to 
shipboard crises is encoded in a set of production rules.  A 
knowledge reasoner operates over this production system 
to provide the tutor with procedural explanations of 
domain-specific actions, and to provide the student model 
(see section 3.3) with information about the problem-
solving session.   
 
3.3 Student Model 

 
The SCoT student model uses a Bayesian network to 

characterize the causal connections between pieces of 
target domain knowledge (e.g. a rule for when to perform 
some action) and observable student actions. Every piece 
of target domain knowledge has an associated probability 
representing the system's best guess that the student 
knows the particular piece of knowledge.  This Bayesian 
framework was chosen because the task of inferring a 
student's cognitive state from their responses to questions 
involves a great deal of uncertainty [7].  The student 
model is dynamically updated during both the problem 
solving session and the dialogue.   
 
3.4 Tutor 

 
The tutor consists of two components: one for 

planning and executing tutorial activities, and one that 
contains recipes specifying how to decompose these 
activities into other tutorial activities or into low-level 
actions.  These components are described in detail in 
section 4.   
 
4. SCoT’s Tutorial Architecture  

 
One aspect of leading a reflective discussion is 

determining how to contextualize information in the most 
effective manner.  Students will likely provide evidence 
during the dialogue that alters the tutor’s original 
assessment as well as their plan for how to contextualize 
information.  This emphasizes the need for a planning 
architecture that allows for revisions to the original 
dialogue plan.  The ability to plan and carry out a flexible 
and coherent dialogue has been a large motivational factor 
influencing the design of SCoT's tutor component.  We 
have chosen an approach that separates tutorial 
knowledge (i.e. how to lead a tutorial dialogue) from all 
other sources of information (e.g. domain knowledge, 
knowledge of the student).  The tutorial knowledge is 
divided between a three-tier planning and execution 
system (see section 4.1) and a recipe library (see section 
4.2).  The three-tier approach to planning and execution 
was originally developed for artificially intelligent robots 
and has recently been deployed in tutorial dialogue 
systems [18].  By separating high-level planning from 
plan-revision and plan-execution, it allows the tutor to



 
Figure 1. Interaction between SCoT tutor component & information state. 

 
lead a flexible dialogue and to continually re-assess 
information from external knowledge sources in order to 
appropriately contextualize the information it presents.  
Figure 1 depicts this separation of knowledge. 
 
4.1 Planning and Execution System 

 
The Information State encapsulates all external 

knowledge sources.  It provides the tutor with 
information such as the current context of the dialogue, or 
a history of the student's interactions with SCoT.  By 
separating tutorial knowledge from other knowledge 
sources, we not only create a tutor that is reusable in other 
domains [17], we also provide a clean and consistent way 
for each component of the tutor to access information 
pertaining to the current context.  Note that Figure 1 only 
depicts information flow with respect to the tutor—the 
components of the information state are also updated by 
one another, and by other components of SCoT.   

The deliberator makes high-level plans.  Before the 
start of a dialogue, the deliberator uses information 
gathered from the information state to select a high-level 
tutorial strategy from the recipe library and place it on the 
activity tree.  During the dialogue, the deliberator can be 
called on by the sequencer to repair plans (i.e. add or 
remove planned activities from the activity tree). 

The sequencer handles plan-revision.  Before 
executing a planned activity, the sequencer checks the 
current context (from the information state) to make sure 
that the goals of the planned activity are still relevant, and 
reorders low-level activities when necessary.   

The controller handles low-level input to and output 
from the tutorial component.  It initiates the execution of 
tutorial activities, and handles the classification of student 
responses (i.e. it interprets logical representations of their 
utterances as well as actions performed in the GUI). 
 
4.2 Recipe Library 

 
An activity recipe can be thought of as a tutorial goal 

and a plan for how the tutor will achieve the goal.  The 
recipe library contains a large body of both high-level and 
low-level activity recipes.  The recipes are written in a 
scripted language [12] which allows for automatic 
translation into system activities—the same activities that 
are stored in the activity tree (each node on the activity 
tree corresponds to one tutorial goal).  Consider the 
following excerpt from a sample dialogue constructed to 
highlight the capabilities of SCoT: 
 

1 Tutor: OK, in this session there was a fire here, in the 
supply department storeroom. 

2 Tutor: You had difficulty controlling this fire, so we 
should review the various areas of damage 
control that were covered in this problem. 

3 Tutor: After the fire alarm sounded, you sent repair 3 
to set fire boundaries.  However, there is 
something else you should have done before 
setting fire boundaries.  Can you tell me what 
that is? 

4 Student: I'm not sure. 
5 Tutor: Well, the supply department storeroom is an 

unmanned space.  When the alarm sounds, are 
you certain that there really is a fire? 

6 Student: No, I guess not. 
7 Tutor: Can you tell me now what you forgot to do? 
8 Student: I should have sent investigators to verify the 

alarm. 
9 Tutor: Yes, that's exactly right. 

 
Figure 2.  Sample dialogue with SCoT 

 
This dialogue illustrates one tutorial approach to 

contextualizing the information being presented.  The 
recipe library contains many more, and can easily be 
augmented.  The dialogue excerpt above corresponds to 
the tutorial goal discuss_problem_solving_sequence.  
After the tutor puts this activity on the activity tree, the 
system executes the recipe which causes the activity to be 
expanded into four more-specific activities (i.e. sub-
goals).  The activity tree in Figure 3 shows this 
decomposition.  Note that, in Figure 3 the activity 
situate_problem_context has also been expanded, but the 



other three sub-goals are not yet expanded—this diagram 
represents the state of the activity tree after turn (1) and 
before turn (2) in the dialogue from Figure 2.   

 
Figure 3.  Sample Activity Tree. 

 
The tutorial goals (activities) in Figure 3 give rise to a 

contextualized dialogue in the following ways: 
 In turn (1) of the dialogue, it is the tutor's first mention 

of this problem, so the situate_problem_context activity 
is added to the activity tree, and the tutor describes the 
type of problem while highlighting its location in the 
ship display (regions are colored according to the type 
of crisis, e.g. red for fire, grey for smoke). 

 In turn (2) of the dialogue, the tutor tells the student 
why it chose to review this sequence so that the student 
will understand the tutor’s subsequent turns.  This 
corresponds to the activity explain_review_sequence. 

 In turn (3) of the dialogue, the tutor contextualizes the 
problem by reminding the student what they did (they 
sent repair 3 to set fire boundaries).  This corresponds 
to the activity state_correct_steps. 

 Also in turn (3), the tutor asks the student what step of 
the sequence they omitted.  Since the student does not 
provide the information the tutor is looking for (in turn 
(4)), the tutor provides further information about the 
context (turn (5)), and reasks the question (turn (7)).  
This interaction is specified in the decomposition of the 
elicit_missing_steps activity (not shown in Figure 3). 

 
Figure 4 shows simplified recipes for two tutorial 

activities: discuss_problem_solving_sequence and 
situate_problem_context.  Each recipe contains three 
sections: parameters, information to monitor, and body.  
Parameters specify what information is passed in to the 
recipe, InformationToMonitor specifies which parts of 
the information state are used in determining how to 
execute the recipe, and Body specifies how to decompose 
the activity into other activities and low-level actions.  
For example, in the first recipe shown in Figure 4, the 
tutorial goal discuss_problem_solving_sequence is 
decomposed into either 3 or 4 subgoals (depending on 
whether the problem has already been discussed).  When 

this recipe is executed, the 4 subgoals are added to the 
activity tree, and the tutor begins to process their 
respective recipes. 

 
 
Activity <discuss_problem_solving_sequence> { 
  
  Parameters { 
    currentProblem; 
  } 
 
  InformationToMonitor { 
    currentProblem.alreadyDiscussed; 
  } 
 
  Body { 
    if (!currentProblem.alreadyDiscussed) { 
      situate_problem_context; 
    } 
    explain_review_sequence; 
    state_correct_steps; 
    elicit_missing_steps; 
  } 
} 
 
Activity <situate_problem_context> { 
  Parameters {} 
 
  InformationMonitored { 
    currentProblem.type; 
    currentProblem.location; 
  } 
 
  Body { 
    highlight_region(currentProblem.location); 
    state_type_and_location(currentProblem.type, 
      currentProblem.location); 
  } 
} 

Figure 4. Two sample activity recipes.   
 

Other approaches to contextualization include 
discussing an analogous hypothetical situation, or 
exhaustively recreating the details of a problem-solving 
session.  The activity recipe scripting language provides a 
framework for expressing these tutorial tactics and 
strategies for contextualization.  Furthermore, the 
modular nature of the recipes makes it easy to test to the 
effect of different pedagogical and conversational 
approaches to contextualization.   
 
4.3 Multi-modal Interaction 
 

By coordinating spoken and visual output, the tutor 
has greater flexibility in how it chooses to contextualize 
information.  Both the tutor and the student can 
interactively perform actions in an area of the graphical 
user interface called the common workspace.  In the 
current version of SCoT-DC, the common workspace 
consists of a 3D representation of the ship which allows 
either party to zoom in or out, and to select (“point to”) 
compartments, regions, and bulkheads (lateral walls of a 
ship).  In addition, the common workspace is currently 



being expanded to incorporate symbolic representations 
of the changing states of various crises on the ship.   
 The tutor contextualizes the problems being 
discussed by highlighting compartments in certain colors 
(e.g. red for fire, grey for smoke) to indicate the type and 
location the crises.  An example of this coordination can 
be seen in the way the activity situate_problem_context 
(see Figure 3) is decomposed into both visual and spoken 
actions.  Because the dialogue in SCoT is spoken rather 
than typed, it has the unique ability to also coordinate the 
student’s speech and gesture.  This is an area we are 
currently working on, and once implemented, we hope to 
support interchanges such as:   

 
Tutor: If there is a fire here [highlights compartment], in 

compartment 1-126-0-A, which bulkheads should 
you set fire boundaries on? 

Student: I should set primary boundaries here [selects 
bulkhead], and here [selects other bulkhead]. 

 
Studies investigating how people combine speech 

with gestures and diagrams have suggested that 
participants construct shared models of what they are 
discussing in order to facilitate communication of 
difficult content [8].  Allowing the student to explain their 
reasoning while pointing to objects in the workspace 
creates a common mode of communication between the 
student and the tutor, and makes it easier for the tutor to 
know if the student is contextualizing the problem 
appropriately.  This leads us to believe that multi-modal 
interaction is extremely helpful in contextualizing 
reflective tutorial discussions.   
 
5. Conclusion 
 

In this paper, we presented the architecture of SCoT's 
tutor component and described how it uses multi-modal 
interaction to support the contextualization of learning in 
a reflective tutorial discussion.  By separating tutorial 
knowledge from domain knowledge and writing activity 
recipes in a modular way, we have a framework that 
makes it easy to revise plans as the information state 
changes and appropriately contextualize the conversation 
through dialogue and through gesture.  We are continuing 
development efforts to expand the recipe library to 
address several aspects of conducting reflective tutorial 
dialogues.  One focus is to support self-explanation, in 
which students use free-form language to explain their 
own reasoning.  A second focus is to round out further 
tactics for contextualization, and experimentally evaluate 
their comparative effects. 
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