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Abstract. In designing and building tutorial dialogue systems it is important not only to understand the tactics 
employed by human tutors but also to understand how tutors decide when to use various tactics. We argue that 
these decisions are based not only on student problem-solving steps and the content of student utterances, but also 
on the meta-communicative information conveyed through spoken utterances (e.g., pauses, disfluencies, intona-
tion). Since this information is often infrequent or unavailable in typed input, tutorial dialogue systems with speech 
interfaces have the potential to be more effective than those without. This paper gives an overview of the Spoken 
Conversational Tutor (SCoT) that we have built and describes how we are beginning to make use of spoken lan-
guage information in SCoT. Specifically, we describe a study aimed at using meta-communicative information to 
gauge student uncertainty and respond accordingly. In this study, we identify linguistic devices used by human 
tutors when responding to utterances containing signals of uncertainty, integrate these response strategies into two 
versions of SCoT, and evaluate their relative effectiveness. Our main hypothesis—that tutors are more effective if 
they use these linguistic devices in response to student uncertainty—was not confirmed, but our secondary hy-
pothesis—that tutors using these linguistic devices are more effective than tutors that do not use them—was sup-
ported by the results.  

INTRODUCTION 

Studies of human-to-human tutorial interaction have identified many dialogue tactics that human tutors use 
to facilitate student learning (Graesser, Person, & Magliano, 1995; Heffernan, 2001; Evens & Michael, In 
press). These include tactics such as pumping the student for more information, giving a concrete example, 
or making reference to the dialogue history. Furthermore, transcripts of human to human tutorial interac-
tions have been analyzed in order to understand patterns between the category of a student utterance (e.g. 
partial answer, request for clarification) and the category of a tutor response (e.g. positive feedback, lead-
ing question) (Person & Graesser, 2003). However, since the majority of dialogue-based Intelligent Tutor-
ing Systems (ITS) rely on typed student input, information from the student utterance is limited to the con-
tent of what the student typed. Human tutors have access not only to the words uttered by the student, but 
also to meta-communicative information such as timing and the way a response is delivered; they use this 
information to diagnose the student and to choose appropriate tactics (Fox, 1993). This suggests that in 
order for a dialogue-based ITS to tailor its choice of tactics in the way that humans do, the student utter-
ances must be spoken rather than typed.  

Intelligent tutoring systems that have little to no natural language interaction have been deployed in pub-
lic schools and have been shown to be more effective than classroom instruction alone (Koedinger et al., 
1997). However, the effectiveness of both expert and novice human tutors (Bloom, 1984; Cohen, Kulik, & 
Kulik, 1982) suggests that there is more room for improvement. In recent years, many intelligent tutoring 
systems have begun to incorporate natural language dialogue. Some tutorial dialogue systems employ short, 



directed dialogues when the student goes down an incorrect path or completes a step requiring explanation 
(VanLehn et al., 2002; Zinn, Moore, & Core, 2002; Aleven, Koedinger, & Popescu, 2003). Other tutorial 
dialogue systems lead longer natural language dialogues throughout the problem-solving process (Person et 
al., 2001; Michael et al., 2003; Heffernan & Koedinger, 2002). Person et al. (2001) found average learning 
gains of 0.7 standard deviations greater than the control, and VanLehn et al. (2002) found that adding natu-
ral language capabilities to an existing model-tracing tutor increased learning gains by 0.9 standard devia-
tions. These results suggest that dialogue-based tutoring systems may be more effective than tutoring sys-
tems with no dialogue. However, all of these systems use either keyboard-to-keyboard interaction or key-
board-to-speech interaction (where the student's input is typed and the tutor's output is spoken). This pro-
gression towards human-like use of natural language suggests that tutoring systems with speech-to-speech 
interaction might be even more effective.  

The current state of speech technology has allowed researchers to build successful spoken dialogue sys-
tems in domains ranging from travel planning to in-car route navigation (Walker et al., 2002; Belvin, 
Burns, & Hein, 2001). There is reason to believe that spoken tutorial dialogue systems can be just as suc-
cessful.  

In the remainder of this paper, we describe (a) the potential advantages of spoken interaction, (b) the 
SCoT framework and how it provides an infrastructure for comparative study of tutorial strategies, (c) an 
evaluation we conducted to test our hypotheses about how tutors respond to signals of uncertainty, and (d) 
the challenges we have faced along the way. 

POTENTIAL ADVANTAGES OF SPOKEN DIALOGUE 

In this section we discuss research that suggests that tutorial dialogue systems with speech interfaces have 
certain advantages over tutorial dialogue systems that depend solely on typed input. First, spoken language 
contains meta-communicative information that, alongside student actions and the literal meaning of student 
utterances, helps human tutors decide upon effective tutoring tactics and infer an accurate student model. 
Second, spoken interaction allows students to gesture with their hands while speaking. Third, spoken tuto-
rial interactions contain a higher number of student turns and self-explanations. These potential advantages 
are described in turn below. 

Spoken dialogue contains many meta-communicative features that human tutors can use to gauge student 
understanding and student affect. These features include: 

 
 hedges (e.g. “I guess I just thought that was right”)  
 disfluencies (e.g. “um”, “uh”, “What-what is in this space?”) 
 prosodic features (e.g. intonation, pitch, energy) 
 temporal features (e.g. pauses, speech rate)  
 

Human tutors may use the dialogue features listed above to infer a more accurate assessment of student 
confidence or uncertainty, and consequently adapt the discussion to the student’s strengths and weaknesses. 
Litman and Forbes-Riley (2004) have demonstrated that the prosodic and acoustic information conveyed by 
speech can improve the detection of confusion and may be useful for adapting tutoring to the student. In 
building an ITS, many of these features of spoken language can be detected, and used both in selecting the 
most appropriate tutoring tactic and in developing a more accurate student model. For example, long-term 
factors such as the student’s knowledge of the domain and motivation, as well as short-term factors like the 
student’s understanding of the tutor’s utterance may be more accurately determined (Litman et al. 2004). 

In analyses of non-tutorial dialogue, we see evidence that this meta-communicative information is an im-
portant part of conversation. Studies in psycholinguistics have shown that when answering questions, 
speakers produce hedges, disfluencies, and rising intonation when they have a lower “feeling-of-knowing” 



(Smith & Clark, 1993) and that listeners are sensitive to these phenomena (Brennan & Williams, 1995). In 
a Wizard-of-Oz style comparison of typed vs. spoken communication to access an electronic mail system, 
the number of disfluencies was found to be significantly higher in speech than in typing (Hauptmann & 
Rudnicky, 1988). There are no formal analyses comparing the relative frequencies of hedges, however, a 
comparison of transcripts of typed dialogues and transcripts of spoken dialogues suggests that some hedges 
(e.g. “I guess”) are significantly more frequent in speech, while other hedges (e.g. “I think”) are equally 
frequent in both speech and typing (data from Bhatt, 2004 and CIRCSIM corpus). 

A second benefit of spoken interaction is the ability to coordinate speech with gesture. Compared to key-
board input, spoken input has the advantage of allowing the student to use their hands to gesture (e.g., to 
point to objects in the workspace) while speaking. Studies have shown that speech and direct manipulation 
(i.e., mouse-driven input) have reciprocal strengths and weaknesses which can be leveraged in multimodal 
interfaces (Grasso & Finin, 1997). For certain types of tutoring (i.e., tutoring where the student is doing a 
lot of pointing and placing), spoken input and direct manipulation together may be better than just speech 
or just direct manipulation. Furthermore, allowing the student to explain their reasoning while pointing to 
objects in the GUI creates a common workspace between the participants (Clark, 1996) which helps con-
textualize the dialogue and facilitate a mutual understanding between the student and tutor, making it easier 
for the tutor to know if the student is understanding the problem correctly.   

Finally, recent evidence indicates that in human-to-human tutorial interaction, spoken dialogues are more 
effective than typed dialogues. A study of self-explanation (the process of explaining solution steps in the 
student's own words) suggests that spontaneous self-explanation is more frequent in spoken rather than 
typed tutorial interactions (Hausmann & Chi, 2002). In addition, a comparison of spoken vs. typed human 
tutorial dialogues showed that the spoken dialogues were more effective (i.e., produced larger learning 
gains) than the typed dialogues (Litman et al., 2004).  

OVERVIEW OF SCoT  

The design of SCoT is based on the assumption that the activity of tutoring is a joint activity1 where the 
content of the dialogue (language and other communicative signals) follows basic properties of conversa-
tion but is also driven by the activity at hand (Clark, 1996). Following this hypothesis, SCoT’s architecture 
separates conversational intelligence (e.g. turn management, construction of a structured dialogue history, 
use of discourse markers) from the activity that the dialogue accomplishes (in this case, reflective tutoring). 
SCoT is developed within the Architecture for Conversational Intelligence (Lemon, Gruenstein & Peters, 
2002), a general purpose architecture supporting multimodal, mixed-initiative dialogue.  

SCoT-DC, the current instantiation of our tutoring system, is applied to the domain of shipboard damage 
control. Shipboard damage control refers to the task of containing and eliminating the effects of fires, 
floods, and other critical events that can occur aboard Navy vessels. In a typical interaction, students carry 
out a reflective discussion with SCoT-DC after completing a problem-solving session with DC-Train (Bu-
litko & Wilkins, 1999), a fast-paced, real-time, multimedia training environment for damage control. An 
excerpt from a dialogue between a student and SCoT-DC  is shown below in Figure 1. 

 

Tutor: There is one more thing you forgot to do. What is it? 

Student: um … <pause> … dewater the compartment 

Tutor: No, that’s not right. 

Tutor: When we discussed the fire in the Dry Provisions Storeroom earlier, what 
did you say needed to be done in order to contain the fire? 

                                                        
1   A joint activity is an activity where participants coordinate with one another to achieve both public and private goals (Clark, 

1996). Moving a desk, playing a duet, and shaking hands are all examples of joint activities.  



Student: set fire boundaries 

Tutor: Right. Floods need to be contained just like fires. Now, what should you 
do to prevent a flood from spreading? 

Student: I should set flood boundaries 

Tutor: Yes, that’s right. 

Fig. 1. Excerpt of dialogue with SCoT 
 
Before the start of each dialogue, SCoT receives a log of the student’s DC-Train session. Next, SCoT’s 

knowledge reasoner generates an expert solution against which to compare the student’s actions. The dia-
logue in Figure 1 illustrates one possible top-level tutorial strategy: stepping through the student’s actions 
and eliciting missing actions. Other top-level strategies include discussing an analogous hypothetical situa-
tion, or exhaustively recreating the details of a problem-solving session.  

Over the next few sections we will explain how the various components of SCoT interact to produce the 
dialogue excerpt in Figure 1. The two most relevant components for this discussion are the dialogue man-
ager and the tutor. The separation of functionality into these two components allows for a wide variety of 
dialogue to be carried out. By keeping each component appropriately abstracted from the other, the dia-
logue manager is able to specialize in controlling and managing the speech interaction while the tutor can 
concentrate on formulating the appropriate discourse plan. These components are presented briefly in the 
next two sections. A more detailed system description is available in (Clark et al., 2005). 

 
Dialogue Manager 
 
The dialogue manager handles aspects of conversational intelligence (e.g. turn management, construction of 
a structured dialogue history, use of discourse markers) in order to separate purely conversational aspects 
of the interaction from tutorial aspects. It contains multiple dynamically updated components—the two 
main ones are the dialogue move tree, a structured history of dialogue moves, and the activity tree, a hier-
archical representation of the past, current, and planned activities initiated by either the tutor or the student. 
Figure 2 below shows the dialogue move tree corresponding to the sample dialogue in Figure 1. 
 
  Root 
   … [earlier parts of dialogue] … 
   -> Report  : “There is one more thing you forgot to do” 
   -> WH-Query : “What is it?” 
    -> WH-Answer : “um” 
    -> WH-Answer : “dewater the compartment” 
   -> Report : “No, that’s not right” 

    -> WH-Query : “When we discussed the fire in the Dry Provisions Storeroom earlier, what did you 
say needed to be done in order to contain the fire?” 

    -> WH-Answer : “set fire boundaries” 
   -> Report : “Right.” 
   -> Report : “Floods need to be contained just like fires.” 
   -> WH-Query : “Now, what should you do to prevent a flood from spreading?” 
    -> WH-Answer : “I should set flood boundaries” 
   -> Report : “Yes, that’s right.” 

 
Fig. 2. Sample Dialogue Move Tree 

 
 The dialogue move tree is a hierarchical set of dialogue moves representing the various threads of 
conversation. It is used by the dialogue manager in supporting multi-threaded conversation and in manag-



ing turn-taking. Each dialogue move has a type (Report, WH-Query, YN-Query, WH-Answer, YN-Answer 
or Root) that imposes restrictions on which other types can attach to it. For example, a WH-Query dialogue 
move indicates that something is being requested, and tells the dialogue manager that only utterances which 
(a) address the query and (b) come from the other speaker should be attached to it.  

In this way, the dialogue manager protects the tutor from uninterpretable or out-of-context utterances 
and allows the tutor to plan responses or re-plan high-level goals only when relevant. The tutor thinks on 
the level of activities, which are represented in the activity tree. It is important to mention more explicitly 
how dialogue moves and activities are related. During the normal course of execution, the dialogue man-
ager monitors the states of activities on the activity tree (e.g., planned, current, cancelled, done) and will 
generate an utterance based on certain state changes. For example, when the tutor’s activity to elicit a stu-
dent action (elicit_action) becomes “current”, this is when a WH-Query is created, actually asking the 
question (thus aiming to elicit a response from the student). Figure 3 below is an example of what the activ-
ity tree would look like at the end of the sample dialogue (from Figure 1). For SCoT, each activity initiated 
by the tutor corresponds to a tutorial goal; the decompositions of these goals are specified by activity reci-
pes contained in the recipe library (activity recipes will be described further in the next section).   

 
-> Root 

-> Discuss_Errors_In_Step 
 -> Introduce_Step 
  -> State_Num_Unperformed_Necessary_Actions 
 -> Elicit_Unperformed_Necessary_Actions 
  -> Elicit_Action 
   -> Acknowledge_Incorrect_Answer 
   -> Give_Referring_Back_Hint_question 
    -> Acknowledge_Correct_Answer 
    -> State_Relation_Between_Referring_Back_Problem 
    -> Ask_Followup_Question 
     -> Acknowledge_Correct_Answer 

 
Fig. 3. Sample Activity Tree 

 
In addition to maintaining the dialogue move tree and the activity tree, the dialogue manager also con-

trols all of the other natural language components. In the current version of SCoT we use Nuance2 as our 
automatic speech recognizer, Festival and FestVox3 for limited-domain text-to-speech synthesis, and Gem-
ini (Dowding et al., 1993) as a natural language parser.  Figure 4 shows a sample logical form (LF) for one 
of the student’s responses in the sample dialogue: 
 

answer(vp(action(set), 
          semantic([object(np(n(containment(fire_boundary)), 
                              semantic([]), 
                              grammatical([number(pl)]))), 
                    location(null), 
                    adv_list([])]), 
          grammatical([tense_mood_aspect([tense(inf)])]))) 

 
Fig. 4. Logical Form for “set fire boundaries” 

 

                                                        
2 http://www.nuance.com 
3 http://festvox.org 



This LF, coming from the Gemini parser, gives us three important pieces of information. The first is that 
the most likely interpretation of this utterance is as an answer to something, which the dialogue manager 
can use for attaching it logically in the dialogue move tree. The other two pieces of information are the 
embedded verb phrase and noun phrase.  These two entities comprise the content of the student’s answer 
and are what will be compared to the correct answer(s) held by the tutor.  
 
Tutor 
 
The tutor component contains the tutorial knowledge necessary to plan and carry out a flexible and coher-
ent tutorial dialogue. The tutorial knowledge is divided between a planning and execution system and a 
recipe library (see Figure 5).  

 

 
 

Fig. 5. Subset of SCoT architecture 
 
 The planning and execution system is responsible for (a) selecting initial dialogue plans, (b) revising 

plans during the dialogue, (c) classifying student utterances, and (d) deciding how to respond to the student. 
All of these tasks rely on external knowledge sources such as the knowledge reasoner, the student model, 
and the dialogue move tree (collectively referred to as the Information State). The planning and execution 
system “executes” tutorial activities by placing them on the activity tree, where they are interpreted and 
executed by the dialogue manager. By separating tutorial knowledge from external knowledge sources, this 
architecture allows SCoT to lead a flexible dialogue and to continually re-assess information from the In-
formation State in order to select the most appropriate tutorial tactic.  

 The recipe library contains specifications for how to decompose a tutorial activity into other activities 
and low-level actions. These ‘activity recipes’ are the constructs by which the tutor reasons about and plans 
tutorial interaction—a recipe can be thought of as a tutorial goal and a plan for how the tutor will achieve 
the goal. The library contains activity recipes for both low-level tactics (e.g. responding to an incorrect 
answer) and high-level strategies (e.g. discussing the student’s omitted actions). The recipes are written in a 
scripted language (Gruenstein, 2002) allowing for automatic translation into system activities. An example 
activity recipe will be shown below in Figure 6.  
 The division of knowledge in the tutor component (between the recipe library and the planning and 
execution system) allows us to independently evaluate hypotheses such as the ones described later in this 
paper (i.e. test whether their presence or absence changes the effectiveness of SCoT). Each hypothesis is 
realized by a combination of activity recipes, and the planning and execution system ensures that a coherent 
dialogue will be produced regardless of which activities are put on the activity tree.  
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An activity recipe for processing a response to an elicit_action activity is shown below. A recipe con-
tains three primary sections: DefinableSlots, MonitorSlots, and Body. The DefinableSlots specify what 
information is passed in to the recipe, the MonitorSlots specify which parts of the Information State are 
used in determining how to execute the recipe, and Body specifies how to decompose the activity into other 
activities or low-level actions. The recipe below decomposes the activity of processing a student’s response 
into anywhere from one to three other activities, depending on the MonitorSlots (the classification of the 
student’s response, whether uncertainty in that utterance was detected, and whether the specific topic has 
already been discussed). The planning and execution system places these activities on the activity tree, and 
the dialogue manager begins to execute their respective recipes.  

 
 
  Activity <process_response_for_elicit_action> { 
    
   DefinableSlots { 
    currentProblem; 
    currentUtterance; 
   } 
 
   MonitorSlots { 
    currentUtterance.answerClassification; 
    currentUtterance.uncertaintyDetected; 
   } 
 
   Body { 
    if(answerClassification == CORRECT) { 
     Acknowledge_Correct_Answer; 
     if (uncertaintyDetected) Paraphrase_Correct_Answer; 
       } 
       else { 
              if (answerClassification == INCORRECT)  

    Acknowledge_Incorrect_Answer); 
              else if (answerClassification == DONT_KNOW)  

    Acknowledge_Neutral; 
 
   if (topicDiscussed && uncertaintyDetected) 

      Give_Referring_Back_Hint_Question; 
     else { 

    Give_Convey_Information_Hint; 
    Reask_Question; 

     } 
       } 
   } 

Fig. 6. Activity Recipe for process_response_for_elicit_action 
 

This recipe would be responsible for adding the Acknowledge_Incorrect_Answer and 
Give_Referring_Back_Hint_Question activities to the activity tree shown earlier in Figure 3. All activity 
recipes have this same structure. The modular nature of the recipes helps us test our hypotheses by making 
it easy to alter the behavior of the tutor. Furthermore, the tutorial recipes are not particular to the domain of 
damage control; through our testing of various activity recipes we hope to get a better understanding of 
domain-independent tutoring principles. 

Other components in the Information State that the tutor makes use of are the knowledge reasoner and 
the student model. The knowledge reasoner provides a domain-general interface to domain-specific infor-
mation; it provides the tutor with procedural, causal, and motivational explanations of domain-specific 
actions. The student model characterizes the causal connections between pieces of target domain knowledge 
and observable student actions. It can be dynamically updated both during the problem solving session and 
during the dialogue.  

 



Multimodality 
 
Another way that SCoT takes advantage of the spoken interface is through multimodal interaction. Both the 
tutor and the student can interactively perform actions in an area of the graphical user interface called the 
common workspace. In the current version of SCoT-DC, the common workspace consists of a 3D repre-
sentation of the ship which allows either party to zoom in or out and to select (i.e. point to) compartments, 
regions, and bulkheads (lateral walls of a ship). This is illustrated below in Figure 7, where the common 
workspace is the large window in the upper portion of the screen.  

 

 
 

Fig. 7. Screen shot of SCoT-DC 
 
The tutor contextualizes problems being discussed by highlighting compartments in specific colors (e.g. 

red for fire, gray for smoke) to indicate the type and location of the crises. With the addition of graphical 
context, the tutor can use speech that is succinct and immediately conveys the nature of the problem. The 
graphical representations also aid the tutor by allowing it to use simpler spoken referents in situations 
where various different entities are present in the context, such as “This compartment” rather than “Com-
partment 2-174-6-Q .” 

Because the dialogue in SCoT is spoken rather than typed, students are free to use their hands to make 
gestures in the common workspace while they are speaking. This allows them to “point to” compartments, 
regions, and bulkheads in the ship display while they are explaining an action they took in the session, or 
asking a hypothetical question.  

Understanding terminology is an important issue in the domain of damage control and students are at 
times asked to label or select corresponding entities in the common workspace in order to demonstrate their 
knowledge. Allowing the students to respond with graphic manipulations as well as with spoken answers 
can lighten the student’s cognitive load by letting them use fewer words and/or their modality of choice 
(Oviatt, 1999). This functionality in SCoT was not present in the version used by the study described in 
this article. However, a study comparing the effectiveness of four combinations of multimodal input and 
output in SCoT was conducted at the US Naval Academy in February 2005. The results of this large-scale 
study (200+ participants) are currently being processed. 



ANALYSIS OF HUMAN TUTORING TRANSCRIPTS  

In order to develop hypotheses about how tutors respond to signals of uncertainty, we conducted a small-
scale analysis of human tutorial transcripts. It has been observed that “tutors use the timing of a student’s 
response, and the way the response is delivered, in addition to what might be called the ‘literal content’ of 
the response, as a source of diagnostic information” (Fox, 1993). Fox argues that human tutorial dialogue 
contains many “transition relevance places,” where one party gives the other the chance to take the floor, 
and that tutors infer a student’s level of understanding by observing when and how the student takes the 
floor (e.g., by completing a sentence started by the tutor, by repeating a phrase spoken by the tutor, or by 
answering a question right away versus after a delay).  
 In our investigation, we were interested in both the timing and the delivery of responses—in particular, 
in cues that can signal student uncertainty (e.g., hedges, response latencies, mid-sentence pauses, filled 
pauses, trailing off, and fragmented or incomplete sentences). Specifically, we were interested in how tutors 
vary the way they respond to student answers depending on (a) the student’s language, and (b) the manner 
in which the answer was spoken. To do this, we examined transcripts of one-on-one human tutoring in mul-
tiple domains.  This section summarizes the analysis performed and the subsequent observations. 
 
Data 
 
Transcripts of human tutorial dialogues from various corpora in the domains of physiology, algebra, and 
shipboard damage control were analyzed in order to understand how human tutors respond to signals of 
uncertainty, focusing specifically on the linguistic constructions used in responding.  

 The dialogues in the domain of physiology came from the CIRCSIM-Tutor corpus of human tutorial 
dialogues collected by M. Evens, J. Michael, and A. Rovick at Rush Medical College. The corpus includes 
transcripts of 6 face-to-face tutoring sessions (approximately 2000 dialogue turns) and 75 keyboard-to-
keyboard tutoring sessions, of which 5000 lines have been annotated for tutorial goal structure, student 
answer classification, and other relevant information. These dialogues were collected in order to guide the 
development of the CIRCSIM-Tutor system (Michael et al., 2003).   

 The dialogues in the domain of algebra came from the Ms. Lindquist Algebra Tutor corpus of human 
tutoring dialogues collected by Neil Heffernan (Heffernan, 2001). The corpus includes a transcript of a 
one-on-one hour-long tutoring session between an experienced mathematics tutor and an eighth grade stu-
dent. The transcript contains approximately 400 dialogue turns. 

 The dialogues in the domain of shipboard damage control were collected at the US Navy's Surface 
Warfare Officer's School (SWOS) in Newport, RI. The 15 debriefs contain approximately 240 dialogue 
turns in total.  

We divided the data into two groups—one for typed tutorial dialogue and one for spoken tutorial dia-
logue. The typed dialogue group contains the 5000 lines of annotated transcripts from the CIRCSIM cor-
pus. The spoken dialogue group contains the CIRCSIM face-to-face transcripts, the Ms. Lindquist tran-
script, and the damage control transcripts. In this paper, these two groups are referred to as the ‘typed dia-
logue transcripts’ and the ‘spoken dialogue transcripts’. 

 
Method 

 
As previously mentioned, spoken dialogue contains many meta-communicative features that human tutors 
can use to gauge student understanding and student affect. For this analysis, we were interested in the tim-
ing and the delivery of responses—in particular, in cues that can signal student uncertainty. The features 
that we considered to be candidate signals of uncertainty are summarized below in Table 1 (recall discus-
sion from ‘Advantages of Spoken Dialogue’ section). 



 
Type of Cue Example 

Lexical hedges (e.g., “I think…”, “Maybe…”)  

Temporal response latencies 
mid-sentence pauses 
filled-pauses (e.g., “uh”, “um”) 

Other trailing off at the end of a sentence 
fragmented or incomplete sentences 

 
Table 1. Signals of Uncertainty 

 
Because the typed dialogue transcripts were annotated for tutorial goals, we used them as a starting point 

from which to get a preliminary understanding of the tactics tutors use in responding to uncertain student 
answers. The first signal of uncertainty examined was hedging.4 Bhatt (2004) outlines a list of hedge cate-
gories, which we adopted for this investigation. They are shown below in Table 2. 

 
Hedge Keywords  
“I think” “it sounds as though” 
“I thought” “X should…” 
“probably” “it shouldn’t X, should it?” 
“I guess” “I assumed that…” 
“I’m not sure” “I can try…” 
“kind of” “what I understand…” 
“I believe” answers phrased as questions 
“maybe”  

 
Table 2. Hedge keywords from Bhatt (2004) 

 
In order to understand the distribution of tutor responses to hedged student answers, we analyzed an-

swer-response pairs from the typed dialogue transcripts along the dimensions of incorrect vs. correct and 
hedged vs. non-hedged. Results are described below in Table 3. 
 
Observations and Hypotheses 
 
In the typed dialogue transcripts (approximately 270 dialogue turns), tutor responses to hedged and non-
hedged answers occurred with the following distribution:  

 
 
 
 
 
 

                                                        
4 We do not assume that hedging always indicates uncertainty, but rather that hedging can indicate uncertainty. Furthermore, 

we do not intend to suggest that hedged or uncertain answers are more likely to be incorrect. In fact, Bhatt (2004) found that 
students’ hedges are not a reliable cue to errors or misconceptions. 



 Incorrect answers (n = 17) Correct answers (n = 39) 

Hedge Refer back to past dialogue (3) 

Point out misconception (3) 

Follow incorrect line of reasoning (2) 

State answer  (2) 

Paraphrase student answer (4) 

Other (1) 

 

No Hedge Inform of mechanism (2) 

Try different line of reasoning (3) 

Give hint (2) 

Acknowledge & move on (34) 

 
Table 3. Categories of Tutor Responses to Student Answers 

 
Although it may appear that the various tactics for responding to student answers in Table 3 have no pat-
tern to their distribution, a closer examination reveals that the tactics used in responding to hedged answers 
all involve elaboration on the current topic while the tactics used in responding to non-hedged answers do 
not. It makes sense that a tutor might elaborate on the current topic—either to fill in possible gaps in 
knowledge or to give positive reinforcement for known material. 

Two of the response tactics identified in the typed dialogue transcripts, reminding the student of past dia-
logue and paraphrasing the student’s answer, involved linguistic manipulation of the sort we were inter-
ested in. In the next step, we examined the spoken dialogue transcripts to understand in what situations 
human tutors used these tactics in one-on-one tutoring. 

The first tutorial tactic examined was referring back to past dialogue, i.e., constructions where the tutor 
reminds the student of something previously discussed. Of the 1600 turns in the spoken dialogue transcripts 
there were 180 incorrect student answers, 72 of which contained signals of uncertainty. Thirty-one in-
stances of a tutor reminding a student of something previously discussed were identified. Of the responses 
to incorrect uncertain student answers, 29.2% referred back to previous dialogue; of the responses to in-
correct certain student answers, only 4.6% referred back to previous dialogue. An example from the Ms. 
Lindquist corpus is reprinted below in Figure 8. The example shows a student answer containing many 
mid-sentence pauses. 
 

Student:  600-30+20 divided by :::::::::::::: two :::::::: no this parts wrong ::: [writes 600-
(30+20)/2 and then scratches out the 600-] 

Tutor:  Right. 

Tutor:  That [points at (30+20)/2] looks great but it doesn't work. OK You would think it 
would, you are just averaging, but it doesn't work. What did we define average 
speed as earlier? 

 
Fig. 8. Example of Reference to Previous Dialogue (‘:’ = 0.5 sec pause) 

 
The examples found support the generalization that tutors frequently refer back to past dialogue in re-

sponse to incorrect student answers that contain signals of uncertainty such as hedges, mid-sentence 
pauses, or trailing off. It is plausible for a tutor to purposefully remind a student of previous dialogue when 
the student shows signals of uncertainty because it encourages reflection. Chi (2000) argues that self-
reflection often leads to self-repair, and that compared to hearing corrective feedback, students learn more 
when encouraged to reflect. Also, analyses of human tutorial dialogue have shown that tutors generally 



exploit prior explanations rather than repeating the same information twice (Moore, Lemaire & Rosenblum, 
1993) and that reflective discussions can increase learning (Katz et al., 2003).   

The next tutorial tactic examined was paraphrasing. Of the 1600 turns in the spoken dialogue tran-
scripts there were 337 correct student answers, 103 of which contained signals of uncertainty. Fifteen in-
stances of a tutor paraphrasing a student’s answer were identified.5 Of the responses to correct uncertain 
student answers, 10.1% paraphrased the student’s answer; of the responses to correct certain student an-
swers, only 1.3% paraphrased the student’s answer. An example from the CIRCSIM corpus is reprinted 
below in Figure 9. It shows a series of student utterances containing three sentences that trail off at the end 
as well as the hedge “I guess.”  

The examples found support the generalization that tutors paraphrase correct student answers containing 
signals of uncertainty (i.e., hedges, mid-sentence pauses, trailing off) more frequently than correct student 
answers without signals of uncertainty. This generalization seems plausible because paraphrasing rein-
forces knowledge that the student may be uncertain of and helps them to think about the answer more con-
cisely. Furthermore, paraphrasing can be seen as an attempt to ground the conversation, to establish joint 
actions as part of a common ground (Clark, 1996) and let the student know that s/he has succeeded in 
communicating the information s/he was attempting to convey. 
 

Tutor:  And [initial fiber resting length] relates to which of these parameters? 

Student:  Let's see, initial fiber resting length would be... 

Student:  I'd say it's the preload which is... 

Student:  Well, it relates to the stroke volume, but that's ... 

Tutor:  Now the question is what determines stroke volume, and you told me contractility, 
and what else? 

Student:  Well, I guess if the right atrial pressure were a lot higher, then there would be more 
of an impetus for the blood to go into the right ventricle, and that would increase 
that somewhat. 

Tutor:  So right atrial pressure represents one of the determinants. 

Student:  Yes. 

Tutor:  OK. 
 

Fig. 9. Example of paraphrasing a student’s answer 
 
In summary, the following two observations were made: 
 

1. Tutors paraphrase correct student answers more frequently for answers containing 
signals of uncertainty than for answers without uncertainty 

2. Tutors refer back to previous dialogue after incorrect student answers more frequently 
for answers containing signals of uncertainty than for answers without uncertainty  

 
In the next section, we will explain how these patterns of responding were incorporated into tutoring tactics 
in SCoT. 

                                                        
5 Although only 15 instances of tutors paraphrasing a student’s answer were identified, many more instances of paraphrasing 

non-answers were found. 



EVALUATION 

Our observations and analysis of human tutoring led to the following hypothesis: 
 

Tutors that respond to student uncertainty with particular linguistic devices (paraphrasing and re-
ferring to past dialogue) will be more effective than those that do not. 

 
The linguistic devices of paraphrasing correct answers and referring back to earlier dialogue in responding 
to incorrect answers were combined into one tutorial “treatment” in SCoT and compared to a control 
treatment where the tutor responded to correct answers with simple acknowledgements and to incorrect 
answers with generic hints. The signals of uncertainty that SCoT detected and made use of are listed below. 
 

 Lexical hedges (“I think”, “I thought”, “I guess”, “maybe”, etc.) 
 Filled-pauses (“uh”, “um”) 
 Response latencies (time between tutor’s question and student’s response) 

 
Other signals of potential interest (e.g., mid-sentence pauses, rising intonation) were not included because 
system development had not progressed far enough to support them in time for this study. Figures 10 and 
11 below show examples (taken from the evaluation) of paraphrasing and referring to previous dialogue. 

 
Tutor: Assuming you have a report of fire, there are three other things you 

should have done before ordering firefighting. What is one of them? 

Student: yeah, um isolate the compartment 

Tutor: Yes, that's right. 

Tutor: <Paraphrase> You should send repair five to electrically and mechani-
cally isolate the compartment. 

 

Fig. 10. Paraphrasing 
 

Tutor: Ok, which repair team has jurisdiction over this compartment? [high-
lights compartment] 

Student: <pause>…repair three 

Tutor: No, that’s not right. 

Tutor: <ReferBack> When we went over the regions of the ship earlier, which 
region did we say this was?  [highlights region] 

Student: fore 

Tutor: Yes, and which repair team has jurisdiction over the fore region? 

Student: repair two 

Tutor: Yes, that’s right. 
 

Fig. 11. Referring back to previous dialogue 
 
 
 
 
Methodology 
 



Participants 
 
Forty native English speakers were recruited to participate in this experiment (17 female, 23 male). All 
subjects were novices in the domain of damage control, thirty-six had no prior experience using speech 
recognition systems. 
 
Experiment Design  
 
Subjects were randomly assigned to one of four groups (10 per group) and each group received a different 
style of tutoring, summarized below in Table 1. “T1” refers to the tutorial treatment of paraphrasing cor-
rect answers and referring back to past dialogue after incorrect answers (regardless of uncertainty). “T2” 
(the control treatment) consists of responding to correct answers with simple acknowledgements and to 
incorrect answers with generic hints. 
 

Group Treatment for Knowledge Area A  Treatment for Knowledge Area B  
I T1 T2 (control)  
II T2 (control) T1 
III T1 if uncertain; otherwise control T2 (control) 
IV T2 (control) T1 if uncertain; otherwise control 

 
Table 4. Four Experimental Conditions 

 
In order to counter-balance for subject differences, the damage control knowledge that SCoT tutors on was 
divided into two independent knowledge areas and all subjects received the T1-style tutoring in one knowl-
edge area and the control tutoring in the other. In this way, efficiency was maximized because Group II 
served as a control for Group I and Group I served as a control for Group II (likewise for Groups III and 
IV). This between-subjects design allows us to determine how the use of T1 devices affects learning gains 
in each of the four groups. 
 Knowledge Area A (sequencing) refers to the task of issuing orders at the correct times. Knowledge 
Area B consists of two sub-areas: boundaries and jurisdiction. Setting boundaries refers to the task of cor-
rectly specifying six parameters that describe the perimeter of the area that needs to be cooled or sealed to 
prevent a crisis from spreading. Jurisdiction refers to the task of giving orders to the appropriate personnel 
on the ship. Because setting boundaries and assigning jurisdiction both depend primarily on the location of 
the crisis and not on its other characteristics, they are grouped together.  
 The experiment was conducted in two rounds. Round 1 consisted of subject groups I and II, and Round 
2 consisted of subject groups III and IV. The contingency “T1 if uncertain, otherwise control” present in 
Round 2 corresponds directly to the hypothesis above. Round 1 was run beforehand in order to determine 
whether the T1 responses (paraphrasing and referring back), when employed regardless of the student’s 
indications of uncertainty, had any effect on learning. Also, the median latencies for each question-type 
from Round 1 were used as the thresholds for classifying latencies in Round 2. In this paper, I will refer to 
the treatments in Round 1 as “non-contingent T1” and the treatments in Round 2 as “contingent T1”. 
 
Procedure 
 
Each subject ran through the three DC-Train simulator sessions, in which they were required to solve prac-
tical problems of damage control, interspersed with two SCoT dialogues in which they discussed their per-
formance on the preceding DC-Train session. In each SCoT dialogue both knowledge areas were covered, 



i.e., every dialogue contained both T1-style responses and T2 control responses, but never for the same 
knowledge area. See Pon-Barry (2004) for transcripts.  
 
Measuring Learning Gains 
 
Learning was measured in two ways. Theoretical knowledge of principles was tested in a 22 question mul-
tiple-choice pre-test and a post-test of the same format (11 questions in each knowledge area). Practical 
mastery of both knowledge areas was assessed through quantitative performance measures (described be-
low in more detail) drawn from each of the three DC-Train scenarios. Problem solving in the damage con-
trol domain is different from traditional tutoring domains (e.g., algebra) because the problem state is dy-
namically changing and there is not one unique solution path per scenario. The DC-Train sessions consist 
primarily of the user issuing commands and receiving reports. While we do control for time on task (sce-
narios end after 15 minutes), there is no way to control how many commands a user issues or how many 
“expert” actions will be suggested. For this reason, a variety of performance measures (including raw 
scores and percentages) were calculated.  
 
Results 
 
Written Test Results 
 
Learning gains between the pre-tests and post-tests are summarized in Table 5. Raw gains are simply the  
post-test score minus the pre-test score (as percentages), and normalized gains are: [(post-test – pre-test) / 
(1.0 – pre-test)]. The mean normalized gains are shown graphically in Figure 12. 
 

Group Raw Gain  
Knowledge Area A 
(Stdev) 

Raw Gain 
Knowledge Area B 
(Stdev) 

Normalized Gain 
Knowledge Area A 
(Stdev) 

Normalized Gain  
Knowledge Area B 
(Stdev) 

I 19.1  (10.0) 24.6  (20.1) 49.3  (23.3) 79.6  (35.1) 
II 08.2  (10.9) 25.5  (14.7) 22.7  (30.9) 87.2  (18.2) 
III 08.2  (12.5) 20.9  (18.7) 15.3  (41.2) 81.9  (34.9) 
IV 11.8  (14.9) 25.5  (15.9) 33.0  (36.5) 82.7  (18.9) 

 
Table 5. Learning gains between pre- and post-tests 
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Fig 12. Mean normalized learning gains for Area A (left) and Area B (right) 



 
In order to see whether the differences in means were statistically significant, a one-way ANOVA was run 
on the normalized test score gains of the four groups. The differences were not significant for either knowl-
edge area, although the probability that the differences were not due to chance was much lower for Area A 
(p = .143) than for Area B (p = .945).  Comparing only groups I and II, the differences in mean gain 
matched our predictions; group I had greater gains than group II for Area A, and group II had greater gains 
than group I for Area B. Independent samples T-tests showed that while these differences for Area A were 
statistically significant (p = 0.042), the differences for Area B were not (p = 0.559). A T-test comparing 
differences in mean gain between groups III and IV showed no significant differences in either knowledge 
area.  
 
Performance Results (DC-Train) 
 
Performance measures from the simulator were examined in both knowledge areas. The results for Knowl-
edge Area A showed little difference between all four groups, while the results for Knowledge Area B 
showed significant differences between groups I and II, and non-significant differences between groups III 
and IV. 
 Figure 13(a) below shows the Knowledge Area A (‘sequencing’) gains for each group. Every action that 
a student performs (i.e., every command that s/he issues) is graded as either on-time, early, late, or extra. 
Figure 13(a) represents the gain in percent of student actions that were on-time (i.e., correct) between the 
first and the third DC-Train scenario.  A one-way ANOVA showed none of the differences to be signifi-
cant. Raw scores were also calculated and did not have any significant differences between groups.  
 The performance results for Knowledge Area B (‘boundaries and jurisdiction’) showed more variation. 
The Area B raw scores represent the number of commands issued to the correct party plus the number of 
boundary commands issued with the correct bulkheads (regardless of whether the command was issued on 
time). The overall gains in percent correct are shown in Figure 13(b). 
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Fig 13. (a) Area A: Total gains in percent correct, (b) Area B: Total gains in percent correct 
 
For Knowledge Area B, Group II received non-contingent T1 and Group IV received contingent T1, 
whereas Groups I and III received the control. If T1 really is more effective than the control, we would 
expect group II to have larger gains than group I, and group IV to have larger gains than group III. If our 
hypothesis about when T1 is most effective is correct, we would expect Group IV to have gains at least as 
large as Group II. Figure 13(b) shows that while Group IV did not have larger gains than Group II, Group 



II did have larger gains than Group I, and Group IV did have larger gains than Group III. Independent sam-
ples T-tests showed the difference between Groups I and II to be significant (p = 0.022), but the difference 
between the Groups III and IV to be non-significant (p = 0.405). Pon-Barry (2004) discusses these results 
in greater detail. 
 
Detection of Uncertainty 
 
In general, speech recognition accuracy was good (word error rate = 14.5%), although many utterances  
were rejected (rejection rate = 20.8%). However, there were no significant correlations between recognition 
accuracy or rejection rate and learning gains—suggesting that poor speech recognition did not diminish 
learning.  
 Table 6 below reports the ratio of T1 occurrences to T1 opportunities. There were 80 total T1 opportu-
nities in Round 1 and 79 in Round 2. For Groups I and II, T1 was used at every opportunity, so the ratio is 
1:1. For Groups III and IV, the ratios represent how often signals of uncertainty were detected.  
 

Group SCoT Dialogue 1: 
T1 used/T1 opportunities 

SCoT Dialogue 2: 
T1 used/T1 opportunities 

I 100 % 100 % 
II 100 % 100 % 
III 62.3 % 47.5 % 
IV 60.5 % 48.6 % 

Table 6. Percent of times T1 “kicked-in” for groups III and IV 
 
Both groups showed less uncertainty in their second tutoring session than in their first, which suggests that 
they were gaining confidence over time. This was justified, as we have seen they were in fact learning. Be-
cause Groups III and IV showed roughly equal amounts of uncertainty at each session, we can infer that 
the knowledge area of the question asked did not affect how frequently T1 “kicked-in” (for group III ‘T1 
opportunities’ are limited to Knowledge Area A questions; for group IV they are limited to Knowledge 
Area B questions). 
 The number of times that each “uncertainty cue” was detected (out of 1670 total student responses from 
Round 2) is summarized below in Table 7. Unfortunately, hedges and filled-pauses were scarce to non-
existent in the data.  
 

Uncertainty Cue Number of times cue 
detected in Round 2  

Actual number of occur-
rences in Round 2 

Hedge 0 3 
Filled-pause 20 32 
Latency > threshold 893 N/A 

 
Table 7. Number of occurrences of uncertainty cues 

 
 The data in Table 7 shows that the vast majority of contingent uses of T1 in Round 2 occurred because 
the student’s latency in responding was greater than the threshold. We used response latency as a measure 
of uncertainty, intending to measure the delay in a subject's response to the system. All responses greater 
than the given threshold were considered “uncertain.”  To set the thresholds, we took the median values of 
the latencies measured in Round 1 of the experiment, with each type of question (sequencing, boundaries, 
and jurisdiction) considered separately. Although response latency was not a primary focus in the empirical 



work described earlier, this experiment used latencies in place of mid-sentence pauses because latencies 
were easier to detect. Automatically detecting pauses and aligning them with the recognized strings is a 
capability we plan to include in future experiments.  
 
DISCUSSION 
 
The statistically significant difference between T1 (paraphrasing correct answers and referring back to 
previous discourse in response to incorrect answers) and the control condition (simply acknowledging cor-
rect answers and giving generic hints in response to incorrect answers) found in Groups I and II shows that 
even subtle language variations can affect learning gains. Use of the same linguistic devices contingently in 
Groups III and IV produced results in the same direction (greater learning with T1 than the control), al-
though this difference was not statistically significant. All the evidence from this experiment is consistent 
with the claim that paraphrasing and referring back are helpful linguistic devices for tutors to use. 
 The fact that the test scores showed different patterns than the performance scores is not surprising. The 
written test evaluates a student’s understanding of propositional knowledge without any time pressure, and 
because the questions were multiple choice a student at chance is expected to get 25% correct. The simula-
tor tests how well students can turn their knowledge into actions in a rapidly changing time-pressured envi-
ronment. Because the space of possible actions is so large and the grading of the actions depends on a dy-
namically changing state, a student at chance would get far less than 25% of actions correct. Furthermore, 
in the area of sequencing, a student must keep track not only of the commands he or she issues, but also of 
incoming reports (about multiple crises) in order to issue a command on time. So, it seems that while the 
T1-style tutoring in sequencing gave Group I a better understanding of the propositional knowledge, it may 
not have been sufficient to affect their performance in the simulator. This finding is relevant for developers 
of ITSs in general—where learning gains are often measured with written tests alone. Such measurement 
may be fine for domains where the goal of the tutoring is to improve test scores (e.g., in the classroom), but 
if the goal is to give students a deeper understanding and the ability to apply their knowledge in practice, 
then it is important to look at other measures of learning as well. 
 Regarding the low frequency of hedges and filled-pauses, most subjects spoke verbosely to SCoT at the 
beginning of their sessions, but switched to giving terse and less natural answers after realizing that many 
long or complicated phrases could not be understood (see Pon-Barry, 2004). One interesting point, though, 
is that prior to this experiment, SCoT used a push-to-talk style of interaction. We switched to an open-mic 
style of interaction (i.e., the system listens continuously) for this evaluation in hopes that it would lead to 
more hedges, filled-pauses, and other features that are common in human-human conversation. Subjects 
were more talkative with this version of SCoT (in number of turns taken) than they were with the push-to-
talk version, but as just mentioned, this talkativeness diminished as the dialogue progressed. This suggests 
that with better coverage of natural language phrasings and the ability to detect features such as mid-
sentence pauses, a future study like this one might show different or more significant results. 

LESSONS LEARNED 

Although using spoken language in an intelligent tutoring system has the potential to bring about many of 
the benefits described in this article, it has also raises many challenges. A few important lessons we have 
learned are described in this section. 
 
Student Affect  
 
Maintaining student motivation is a challenge for human tutors and intelligent tutoring systems alike. We 
have observed issues relating to student affect, possibly stemming from the spoken nature of the dialogue. 



For example, in a previous version of SCoT, listeners remarked that repeated usage of phrases such as 
“You made this mistake more than once” and “We discussed this same mistake earlier” made the tutor 
seem overly critical. Other (non-spoken) tutorial systems give similar types of feedback (e.g. Evens & Mi-
chael, In press), yet none have reported this sort feedback to cause such negative affect. This suggests that 
users might have different reactions when listening to, rather than reading, the tutor's output, and that fur-
ther work is necessary to better understand this difference. 
 A related factor is student fatigue. Experiments such as the one described in this paper demand a high 
level of concentration from the student, and by the end of 2.5 to 3 hours, many students become tired or 
mentally worn out (see questionnaire results about “effort required” in Pon-Barry, 2004). It is likely that 
this mental fatigue adversely affects performance in the final simulator session and/or on the post-test. On 
average, subjects in this evaluation completed the post-test in half the time it took them to complete the pre-
test. Obviously, they were much more familiar with the material during the post-test, but it is also possible 
that they were not putting as much effort into the questions as they had in the pre-test. In the field of intelli-
gent tutoring systems, where learning gains are often a criterion of success, minimizing student fatigue is an 
issue that should not be overlooked.  
 
Differences between Human-Human and Human-Computer Conversation  
 
One important lesson learned from this study is that the signals of uncertainty present in human-to-human 
spoken dialogue may not occur with the same frequency in human-to-computer spoken interaction, even in 
the best possible dialogue systems. Because most people talk to computers differently than they talk to 
other humans, we believe a good approach to choosing appropriate signals of uncertainty would be based 
on an analysis of comparable human-to-computer dialogues. At the same time, the current state of SCoT 
and of other automated tutoring systems may not reflect their long-term capabilities well enough to deter-
mine whether users will ultimately use meta-communicative signals such as hedges to them. As a point of 
comparison, humans typing to each other with a chat program use fewer hedges than humans speaking face 
to face, but those who are faster, more prolific typists use hedges at rates approaching those in speech 
(Brennan & Ohaeri 1999). Furthermore, our experience using open-mic interaction in SCoT (compared to a 
push-to-talk interface in the previous evaluation) suggests that the interface itself can encourage (or dis-
courage) natural, conversational speech.  
 
Personification of SCoT    
 
Although the meta-communicative features that we observed in human-to-human tutorial interaction (e.g., 
hedges, filled-pauses) occurred only rarely in this experiment, we should be careful not to assume too 
quickly that people will never use them when talking to computers.  During this evaluation, we observed 
many users personifying SCoT (cf. Reeves & Nass 1996) both during the tutoring sessions and in the post-
experiment questionnaires. Students have apologized to SCoT (“oh sorry”), thanked SCoT (“thank you 
[laugh]”), and written the following in their questionnaires (responding to What did you like the most/least 
about interacting with this system?): 

 “I liked that he sounded as if he were responding directly to me, and how he had a good sense of 
my performance on the preceding simulations.”  

 “sometimes, he was patronizing. i didnt like that. i think he's just kinda angry.”    
Given these examples of social interaction with an automated tutor, it seems reasonable to begin the proc-
ess of modeling uncertainty in human-to-computer speech based on all relevant characteristics of uncer-
tainty in human-to-human speech.  



CONCLUSION 

In this paper, we argued that spoken language interaction is an integral part of human tutorial dialogue and 
that information from spoken utterances is very useful in building dialogue-based intelligent tutors that can 
understand and respond to students as thoroughly and as effectively as human tutors. We described the 
Spoken Conversational Tutor we have built, and presented the results of an evaluation which used SCoT to 
test our hypotheses on how human tutors vary their responses depending on the signals of uncertainty in 
student utterances. The results showed statistically significant differences in learning gain between the non-
contingent tutoring and the control, and non-significant differences in learning gain between the contingent 
tutoring and the control. Our primary hypothesis that tutors are more effective if they paraphrase and refer 
back in response to signals of uncertainty was not confirmed, but the results did affirm our secondary hy-
pothesis that paraphrasing and referring back are helpful linguistic devices and that tutors using them are 
more effective than those who do not. Furthermore, the fact that paraphrasing and referring back are ge-
neric linguistic devices and not specific to tutorial dialogue suggests that the effectiveness of human tutor-
ing may be due to general characteristics of conversation in addition to the specific tutoring techniques. 
 We are still far from understanding exactly how human tutors make use of spoken language features 
such as disfluencies and pauses, but we are building a tutorial framework that allows us to test various 
hypotheses, and in time reach a better understanding of how to take advantage of spoken language in intel-
ligent tutoring systems. 
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