
Evaluating the Effectiveness of SCoT: 
A Spoken Conversational Tutor 

 
 

Heather Pon-Barry, Brady Clark, Elizabeth Owen Bratt, Karl Schultz and Stanley Peters 
 

Center for the Study of Language and Information 
Stanford University 

Stanford, CA 94305 USA 
{ponbarry, bzack, ebratt, schultzk, peters}@csli.stanford.edu 

 
 
 

Abstract.  SCoT is a tutorial dialogue system that engages students in natural language 
discussions through a speech interface.  The current instantiation, SCoT-DC, is applied to the 
domain of shipboard damage control—the task of containing the effects of crises (e.g. fires) that 
occur aboard Navy vessels.  This paper describes a recent evaluation of SCoT-DC and presents 
preliminary results showing: (1) the effectiveness of SCoT-DC as a learning tool, and (2) that 
speech recognition technology is mature enough to support use in tutorial dialogue systems. 
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1   Introduction 
 
There seems to be an assumption within the ITS community that the current state of speech technology is too 
primitive to provide effective tutorial interaction.  Although some tutoring systems have been making use of 
spoken input for years (Aist & Mostow, 1997), only recently have researchers begun incorporating spoken input 
into dialogue-based tutoring systems (Clark et al., 2001; Litman & Silliman, 2004).  The majority of tutorial 
dialogue systems currently rely on typed input from the student (e.g., Graesser et al., 2000; Evens et al., 2001; 
Heffernan & Koedinger, 2002). 
  
SCoT, a Spoken Conversational Tutor, was developed in order to investigate the advantages of spoken language 
interaction in intelligent tutoring systems.  While it has yet to be shown whether spoken tutorial dialogue systems 
can be more effective than typed tutorial dialogue systems, arguments involving access to prosodic and temporal 
information as well as multi-modality have been made in favor of spoken dialogue (Litman & Forbes, 2003; Pon-
Barry et al., 2004).  Furthermore, a recent study comparing spoken versus typed tutoring found significantly 
greater learning gains in the spoken condition when the tutor was a human, but little difference between the two 
conditions when the tutor was a computer (Litman et al., 2004)—suggesting that there is an advantage to spoken 
interaction, but that current tutorial dialogue systems are still far from human-like levels of sophistication. 
  
In the winter and spring of 2004, we ran an experiment at Stanford University to evaluate the effectiveness of 
SCoT.  In particular, the following two hypotheses were tested and confirmed: 
 

(1) Tutorial interactions with SCoT-DC (the current instantiation of SCoT) will help students learn 
shipboard damage control 

(2) Speech recognition, when combined with current technology for natural language understanding and 
dialogue management, is accurate enough to support effective spoken tutoring interactions 

 
This paper is organized as follows.  Section 2 gives an overview of how SCoT-DC works, Section 3 describes 
the experimental procedure, Section 4 presents empirical results, and Section 5 offers some conclusions. 
 



2   System Overview 
 

SCoT-DC, the current instantiation of the SCoT tutoring system, is applied to the domain of shipboard damage 
control.  Shipboard damage control refers to the task of containing the effects of fires, floods, explosions, and 
other critical events that can occur aboard Navy vessels.  Students carry out a reflective discussion with SCoT-
DC after completing a problem-solving session with DC-Train (Bulitko & Wilkins, 1999), a fast paced, real time, 
speech-enabled training environment for damage control.  Figure 1 shows a screenshot of DC-Train.   
 

 
 

Figure 1.  DC-Train Simulator 
 
Figure 2 shows a screenshot of SCoT-DC.  The window on the right depicts the multiple decks of the ship; the 
window in the bottom left corner contains a history of the tutorial dialogue as well as buttons for starting the 
tutor; and the window in the upper left corner is the common workspace—a space where both the student and the 
tutor can zoom in or out, and select (i.e. point to) compartments, regions, or bulkheads (lateral walls in the ship). 
 

 
 

Figure 2.  SCoT-DC Tutor 
 

SCoT is developed within the Architecture for Conversational Intelligence (Lemon et al., 2002), a general 
purpose architecture which supports multi-modal, mixed-initiative dialogue.  The version of SCoT used in these 
experiments consists of three separate components: a dialogue manager, a tutor, and a set of natural language 
tools.  These three components are described briefly in sections 2.1 through 2.3.  A more detailed description can 
be found in Schultz et al. (2003).1 Figure 3 is the overall architecture of our system.   

                                                
1 Also, a downloadable video is available at www-csli.stanford.edu/semlab/muri/November2002Demo.html 



 

 
                               

Figure 3  SCoT-DC Tutor architecture. 
 
2.1   Dialogue Manager 

 
The dialogue manager mediates communication between the system and the user by handling aspects of 
conversational intelligence such as turn management and coordination of multi-modal input and output.  It 
contains multiple dynamically updated components—the two main ones are (1) the dialogue move tree, a 
structured history of dialogue moves, and (2) the activity tree, a hierarchical representation of the past, current, 
and planned activities initiated by either the tutor or the student.  In SCoT, each activity initiated by the tutor 
corresponds to a tutorial goal; the decompositions of these goals are specified by activity recipes contained in the 
recipe library (see section 2.2).   
 
2.2   Tutor 

 
The tutor component contains the tutorial knowledge necessary to plan and carry out a flexible and coherent 
tutorial dialogue.  It is implemented as a set of domain-general tutorial activities (the recipe library) and a system 
for planning and executing these activities. The recipe library contains activity recipes that specify how to 
decompose a tutorial activity into other activities and low-level actions.  The planning and execution system uses 
information from external knowledge sources to (1) generate an initial plan at the start of the dialogue, (2) decide 
when and how to revise these plans during the dialogue, (3) classify student utterances, and (4) decide how to 
respond to student answers, i.e., which recipe to put on the activity tree.  A high-level activity recipe for 
discussing a partially-correct answer is shown in Figure 4, followed by the resulting dialogue in Figure 5 
(dialogue turns resulting from recipe are shown in boldface).  The recipe in Figure 4 decomposes the activity of 
discussing a partially-correct answer into four sub-activities (acknowledge, hint, appraise, and generalize).  The 
tutor places these activities on the activity tree, and the dialogue manager begins to execute their respective 
recipes. 
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Goal 
 Discuss partially-correct answer/error of omission 

Preconditions 
 Student Answer (from dialogue) = Partially Correct 
 Student Action (from DC-Train) = Error of Omission 

Recipe Body  
 Acknowledge: Muted Praise 
 Hint: Partially Correct Hinting Sequence 
 Appraise: State Error of Omission 
 Generalize: Comment on Repeated Errors 

 
 

Figure 4. Activity recipe for discussing a problem solving sequence 
 
 

Tutor:  All right, suppose the fire has been overhauled. 
Tutor:  Let's now discuss the resulting smoke. [displays grey color in compartment].  
Tutor:  What should you do first? 
Student:  Send repair two to desmoke the compartment. 
Tutor:  Almost. 
Tutor:  You should send a different repair team. 
Tutor:  Which team should you send instead? 
Student:  Repair five. 
Tutor:  Yes, exactly.  You should order repair five to desmoke the compartment.   
Tutor:  Repair 2 was overtasked, so repair 5 should have been sent. 
Tutor:  But you sent the wrong repair team during the session. 
Tutor:  This is a mistake you made more than once. 

 
Figure 5. Tutorial dialogue resulting from activity recipe in Figure 4 

 
 
 
2.3   Natural Language Components 

 
The natural language components which make the spoken dialogue possible include a bi-directional unification 
grammar and off-the-shelf tools for automatic speech recognition and text-to-speech synthesis.  Incoming student 
utterances are handled by SCoT in the following way.  First, the utterance is recognized using Nuance2 speech 
recognition, which uses a grammar compiled from a Gemini natural language understanding grammar.  Gemini 
(Dowding et al., 1993) translates word strings from Nuance into logical forms, which the dialogue manager 
interprets in context and routes to the tutor.  The system responds to the student via a FestVox3 limited domain 
synthesized voice. 
 
 
3   Experiment 
 
This experiment was designed to test the hypothesis that SCoT-DC will help students learn damage control.  In 
order to test this hypothesis, we divided the tutorial content into three knowledge areas: sequencing, boundaries, 
and jurisdiction.  Sequencing refers to giving orders for actions in response to crises (e.g. fires, floods) at the 
correct times.  Setting boundaries refers to the task of correctly specifying six parameters that determine the 
location of the bulkheads (upright partitions that separate ship compartments) that need to be cooled or sealed to 
prevent a crisis from spreading.  Jurisdiction refers to the task of giving orders to the appropriate personnel on 
the ship—personnel are assigned to different regions such as forward, aft, and midship. 
 

                                                
2 http://www.nuance.com 
3 http://festvox.org 



3.1   Participants 
 
Thirty native English speakers were recruited to participate in this experiment (16 male, 14 female).  All subjects 
were novices in the domain of damage control, twenty-nine had no prior experience in dialogue system studies. 
 
3.2   Experimental design 
 
Subjects were randomly assigned to three groups.  All groups ran through the same four DC-Train scenarios 
(which increased in difficulty).  Between each DC-Train session, all groups received tutoring in one of the three 
knowledge areas (sequencing, boundaries, and jurisdiction), but at different times.  For example, group I received 
tutoring on sequencing between scenario 1 and scenario 2, group II received tutoring on sequencing between 
scenario 3 and scenario 4, and group III received tutoring on sequencing between scenario 2 and scenario 3.  This 
allowed us to separate learning gains due to the tutorial interaction from learning gains due to practice alone.  In 
this way, each subject served as their own control, and all groups served as a comparison for each other.  Table 1 
shows the layout for each group. 
 

Subject 
Group 

DC-Train 
Session 

SCoT-DC 
Tutoring 

DC-Train 
Session 

SCoT-DC 
Tutoring 

DC-Train 
Session 

SCoT-DC 
Tutoring 

DC-Train 
Session 

I Scenario 1 Sequencing Scenario 2 Boundaries Scenario 3 Jurisdiction Scenario 4 
II Scenario 1 Boundaries Scenario 2 Jurisdiction Scenario 3 Sequencing Scenario 4 
III Scenario 1 Jurisdiction Scenario 2 Sequencing Scenario 3 Boundaries Scenario 4 

 
Table 1.  Experiment design 

 
Learning was measured in two ways.  Firstly, general knowledge was tested in the form of a multiple-choice pre-
test and a post-test.  Secondly, and crucially, quantitative performance measures were drawn from each of the 
four DC-Train scenarios.  Based on the logfiles of each scenario, students were scored for their performance in 
sequencing, boundaries, and jurisdiction.   
 
3.3   Procedure 
 
The experimental procedure is illustrated below in Table 2.  Steps 4 through 10 (shown in boldface) constitute 
the main body of the experiment and correspond to the steps listed in Table 1.  In addition to these main steps, all 
subjects went through an interactive multimedia introduction to (1) familiarize them with DC-Train and basic 
damage control knowledge, and (2) give them practice using the speech recognition interface.  After the 
multimedia introduction, subjects took a 20 question multiple-choice pre-test, and had one practice DC-Train 
session.  Following the main body of the experiment, subjects took a 20 question post-test and filled out a 
questionnaire.  The total duration of the experiment was roughly three hours per subject. 
 

Step 1 Multimedia Introduction 30-40 min 
Step 2 Pre-test 5-10 min 
Step 3 Practice DC-Train session 10 min 
Step 4 DC-Train session 1 15 min 
Step 5 Tutoring < 15 min 
Step 6  DC-Train session 2 15 min 
Step 7 Tutoring < 15 min 
Step 8 DC-Train session 3 15 min 
Step 9 Tutoring < 15 min 
Step 10 DC-Train session 4 15 min 
Step 11 Post-test 5-10 min 
Step 12 Questionnaire < 5 min 

 
Table 2.  Experiment Procedure 

 
 
 



4   Results 
 
4.1   Hypothesis (1) – Effectiveness of Tutoring 
 
Students showed improvement both on the written test and on their performance in the DC-Train scenarios.  
Every student earned a higher score on the post-test than on the pre-test, and the mean post-test score (84%) was 
significantly higher (Paired-Samples T Test: p = 0.000) than the mean pre-test score (67%).  Looking at 
performance in the DC-Train simulator, students were performing better in their fourth session with the simulator 
than in the first for two of the three knowledge areas (sequencing and boundaries).  These performance gains are 
shown in Figure 6.  
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Figure 6.  DC-Train performance gains  
 
The lack of improvement in the area of jurisdiction may be due to a ceiling effect—because initial performance 
in jurisdiction was already very high.  However, there are clear performance gains in the areas of sequencing and 
boundaries.  This leads to the question of whether these gains should be attributed to the SCoT-DC tutoring or 
just to improvement over time with practice on the DC-Train simulator.   
 
Because all three groups received tutoring in all three knowledge areas (at different times), we can separate gains 
due to SCoT tutoring from gains due to practice alone.  We do this by comparing, for a particular knowledge area, 
performance gains across sessions with tutoring on that knowledge area to performance gains across sessions 
with tutoring on some other knowledge area.  For example, consider the graphs in Figure 7.  In Figure 7a, the left 
column depicts the average gain across two DC-Train scenarios between which the student received tutoring on 
sequencing (i.e. for subject group I: between scenario 1 and scenario 2, for subject group II: between scenario 3 
and scenario 4, for subject group III: between scenario 2 and scenario 3).  The right column depicts the average 
gain across sessions between which the student received tutoring on either boundaries or on jurisdiction.  Figures 
7b and 7c show the same data, but for boundaries and jurisdiction respectively.    
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Jurisdiction (N = 30)
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Figure 7.  Gains due to tutoring vs. gains due to practice for  

(a) sequencing, (b) boundaries, and (c) jurisdiction 



Figure 8 shows the average gains due to tutoring and due to practice (no tutoring) across all three knowledge 
areas.  On average, gains in performance after being tutored in a particular knowledge area are over twice as high 
as gains in performance after being tutored in some other knowledge area.   
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Figure 8.  Gains due to tutoring vs. gains due to practice for all three knowledge areas 
 
We have already seen that jurisdiction performance did not improve much with use of the system, perhaps 
because it started at such a high level, so the small difference seen in Figure 7c between the means of 0.04 
(stdev=0.40) and -0.01 (stdev=0.21) in jurisdiction performance may not be as important to consider as the areas 
in which students did improve. 
 
In the area of boundaries, the mean performance gain with tutoring (0.30) is close to one standard deviation 
above the performance gain with tutoring (0.13, stdev=0.21).  This statistic gives the clearest evidence of the 
benefit of tutoring combined with simulator practice. 
 
The fact that in the area of sequencing subjects had smaller average performance gains with tutoring (0.05, 
stdev=0.27) than those without tutoring (0.06, stdev=0.10) seems to argue against the effectiveness of the tutor.  
However, on examining the performance of each subject group separately, an interesting pattern emerges.  
Subjects who received sequencing tutoring first (group I) showed larger gains in sequencing in the following 
DC-Train scenario than they did in their subsequent scenarios (0.13 with tutoring, 0.03 with no tutoring).  
However, the other two subject groups, who received sequencing tutoring later, did not appear to benefit from 
the tutoring (group II: -0.01 with tutoring, 0.12 with no tutoring; group III: 0.04 with tutoring, 0.05 with no 
tutoring ).  A possibile explanation is that the subject matter of sequencing is fundamental to performance on 
DC-Train and that it is critical to be tutored on it early on.  Allowing students to practice their mistakes before 
reviewing the correct actions may lead them into habits that are hard to unlearn.  We hope that future 
experiments may clarify whether this explanation holds. 
 
4.2   Hypothesis (2) – Effectiveness of Speech Interface 
 
We collected the following statistics on speech recognition performance and on speech quantity:  

 percentage of words correctly recognized 
 percentage of sentences recognized with no word errors 
 percentage of sentences rejected by the speech recognizer 
 mean length of utterance in words 
 mean number of utterances per session 

Twenty speakers have been analyzed so far, though for several statistics only sixteen cases ended up meeting all 
the conditions necessary for the analysis. 
  
Our main hypothesis was that speech recognition is accurate enough to support effective spoken tutoring 
interactions.  We predicted that speech recognition performance would correlate with improvements on the 
written tests and with performance in simulator.  We found no correlation with either one. For percentage words 



correct, the correlation with test score gains is -.038, with a significance of .890 (N=16), and the correlations 
with performance in sequencing, boundaries, and jurisdiction were -.303, .216, and .016 respectively.  Figure 9 
shows a scatter-plot of average percent words correct  versus the gains from the pre-test to the post-test.   

 
 

Figure 9.  Scatter-plot of speech recognition success vs. gains in test scores. 
 

Although our prediction was not validated, this result is highly relevant because it suggests that poor speech 
recognition does not diminish learning.  Students who had only 60% of their words recognized correctly showed 
learning gains comparable to students who had 95% of their words recognized correctly.  Even though speech 
recognition is far from perfect, students being tutored by SCoT-DC improved regardless of the number of 
misrecognitions they encountered.  This result is in line with recent findings reported in (Litman et al., 2004).   

 
While speech recognition accuracy did not affect learning, it did affect the student’s desire to use the system 
regularly.  As part of the questionnaire, subjects were asked to rate the following statement on a 1-7 Likert scale 
(1 = strongly disagree, 7 = strongly agree):  

 
“Based on my experience using this tutoring system, I would like to use this kind of automated 
tutoring system regularly.” 
 

Subjects said they would like to use this kind of system again when they had a higher percentage of sentences 
with no errors (Pearson correlation = .557, significant at the 0.05 level (2-tailed)).  However, there was no 
correlation with percentage words correct, and paradoxically, high rejection rates also correlated with more 
desire to use the system (Pearson correlation = .629, significant at the 0.01 level (2-tailed)). 
 
4.3   Future Analysis 
 
In the future, we are interested in adding semantic error rate to the speech performance statistics, to see how 
many of the speech recognition errors made a difference in the interpretation the system assigned to the 
sentence.  Semantic errors are the subset of word and sentence errors that result in the system misunderstanding 
the user (assigning an incorrect logical form to the utterance).  For example, if the student says “send repair five 
to set fire boundaries” and the recognition hypothesis is “send repair five to set fire boundary”, it would be a 
word/sentence error but not a semantic error.  However, if the recognition hypothesis was “send repair five to 
check the fire” it would be both a word/sentence error and a semantic error.  The interplay between word error 
and semantic error is discussed in Wang et al. (2003). 

 
We are also interested in examining speech characteristics that may reflect a student’s level of certainty in their 
answer such as: speech rate, pauses, filled pauses (“um” and “uh”), disfluencies (“se- set boundaries”), hedges 
(“I guess”, “probably”, “maybe”), and latency (the delay between the end of the system’s question and the start 



of the student’s response).  We would like to see if any of these metrics can be used in updating the student 
model and selecting appropriate tutorial tactics. 

 
 
5   Conclusions 

 
These results demonstrate that SCoT-DC’s tutoring on the three knowledge areas was effective.  Subjects who 
started off knowing nothing about the domain learned a surprising amount about shipboard damage control.  In 
just three hours, their performance with the damage control simulator (voice-enabled DC-Train) increased to a 
level of 51% fully correct actions and their scores on a written test about damage control rose to 84% correct. 

 
Additionally, the initial results demonstrate that speech recognition technology is mature enough to support 
usable instructional technology.  And, the remaining room for improvement in speech technology does not 
overwhelm the pedagogical virtues and shortcomings of instructional simulators and intelligent tutors. 
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