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Abstract
We describe an experiment that investigates whether sub-
utterance prosodic features can be used to detect uncertainty
at the word-level. That is, given an utterance that is classified
as uncertain, we want to determine which word or phrase the
speaker is uncertain about. We have a corpus of utterances spo-
ken under varying degrees of certainty. Using combinations of
sub-utterance prosodic features we train models to predict the
level of certainty of an utterance. On a set of utterances that
were perceived to be uncertain, we compare the predictions of
our models for two candidate ‘target word’ segmentations: (a)
one with the actual word causing uncertainty as the proposed
target word, and (b) one with a control word as the proposed tar-
get word. Our best model correctly identifies the word causing
the uncertainty rather than the control word 91% of the time.
Index Terms: prosody, spoken language understanding, uncer-
tainty, emotion detection.

1. Introduction
This paper addresses the problem of detecting uncertainty in
spoken language at the word-level. Existing work on emo-
tion detection has focused on utterance-level classifications.
Prosodic information has proven useful for tasks such as au-
tomatically detecting annoyance and frustration [1] and distin-
guishing positive and negative emotional states [2]. In the area
of uncertainty detection, models trained on prosodic features
have classified utterances as certain, uncertain, or neutral with
accuracies of roughly 75% [3] [4]. In addition to prosodic cues,
visual cues play an important role in conveying level of certainty
among humans [5]. Since we are able to automatically extract
prosodic features but not visual features, this paper examines
models trained solely on prosodic features.

We go beyond previous work by using models trained on
sub-utterance prosodic features to determine, in an utterance
classified as uncertain, which word or phrase within the utter-
ance a speaker is uncertain about. Utterance-level classifica-
tions of degree of certainty are sufficient if a system expects
to be presented with utterances that contain exactly one central
idea. However, in natural language, utterances are often long
and rarely well-formed. The ability to determine which part
of an utterance a speaker is uncertain about will enable the de-
velopment of spoken language applications that understand and
respond to people closer to the way that humans do. For ex-
ample, this ability would be useful in spoken tutorial dialogue
systems [6] [7], voice search applications [8], and second lan-
guage learning and literacy systems [9].

Our approach is to build level-of-certainty prediction mod-
els that take combinations of utterance and sub-utterance
prosodic features as input. We look at two types of prediction
models: linear regression and support vector machine regres-
sion. The utterances our models are trained on are from a cor-

pus containing speech of varying levels of certainty, where the
degree of certainty can be attributed to a single word or phrase
(called the ‘target word’). We extract prosodic features from
the target word, from the context (see example in Section 2),
and from the whole utterance.

We compare the predicted level of certainty using the cor-
rect target word segmentation to the predicted level using an
alternate segmentation where a control word is proposed as the
target word. On the task of choosing between the actual tar-
get word and the control word our best model achieves an ac-
curacy of 91%, a 71% error reduction over a baseline model
trained on only non-prosodic features. This result suggests that
our method of using sub-utterance prosodic features to detect
uncertainty at the word-level is well-suited for this task.

2. Uncertainty Corpus
We have collected a corpus of utterances spoken under varying
levels of certainty [10]. The utterances were elicited by pre-
senting adult native English speakers with a written sentence
containing one or more gaps, then displaying multiple options
for filling in the gaps and telling the speakers to read the sen-
tence aloud with the gaps filled in according to domain-specific
criteria. We elicited utterances in two domains: (1) answering
questions about using public transportation in Boston, and (2)
choosing vocabulary words to complete a sentence. An example
from each domain is shown below.

(1) Q: How can I get from Harvard to the Silver Line?
A: Take the red line to .

a. South Station
b. Downtown Crossing

(2) Mahler’s revolutionary music, abrasive personality
and writings about art and life divided the
city into warring factions.

a. officious
b. trenchant
c. spoffish
d. pugnacious

The term ‘context’ refers to the fixed part of the response (“Take
the red line to” in example (1)) and the term ‘target word’ refers
to the word or phrase chosen to fill in the gap.

The corpus contains 600 utterances from 20 speakers. The
utterances display varying levels of certainty, as evidenced by
the speaker’s self-ratings as well as ratings from a group of hu-
man judges [10]. Each utterance was annotated for level of cer-
tainty on a 5-point scale by five human judges who listened to
the utterances out of context. The average inter-annotator agree-
ment (Kappa) was 0.45, which is on par with past work in emo-
tion detection [2] [3]. We refer to the average of the five ratings
as the ‘perceived level of certainty.’
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We extracted prosodic features from the whole utterance,
the context, and the target word. Pauses preceding the target
word were considered part of the target word; all segmentation
was done manually. Because the speakers had unlimited time to
read over the context before seeing the target words, the target
word is considered to be the source of the speaker’s confidence
or uncertainty; it corresponds to the decision that the speaker
had to make. We measured correlations between each prosodic
feature and the perceived level of certainty and found that while
some prosodic cues to level of certainty were strongest in the
whole utterance, others were strongest in the context or the tar-
get word.

3. Method
We train linear regression and support vector machine (SVM)
models to predict an utterance’s perceived level of certainty us-
ing speech from the corpus described in Section 2 as training
data. For the linear regression models we use the Weka data
mining software toolkit1 with M5 attribute selection. For the
support vector machine regression models, we use the SVM-
Light toolkit [11].

For a subset of utterances that were perceived to be uncer-
tain (perceived level of certainty less than 2.5 where 1 means
‘very uncertain’ and 5 means ‘very certain’), we identify a con-
trol word — a content word roughly the same length as the po-
tential target words and if possible, the same part-of-speech.
We balance the set of control words for position in the utterance
relative to the position of the gap, i.e., half of the control words
appear before the gap location and half appear after. After fil-
tering utterances based on level of certainty and presence of an
appropriate control word, 43 utterances remain. This is our test
set. In the example items shown in Section 2, the corresponding
control words are red line and abrasive.

We then compare the predicted level of certainty for two
segmentations of the utterance: (a) the correct segmentation
with the gap-filling word as the proposed ‘target word’ and (b)
and alternative segmentation with the control word as the pro-
posed ‘target word.’ Thus, the prosodic features extracted from
the target word and from the context will be different in these
two segmentations, while the features extracted from the utter-
ance will be the same. The hypothesis we test in this exper-
iment is that our models should predict a lower level of cer-
tainty when the prosodic features are taken from segmentation
(a) rather than segmentation (b), thereby identifying the gap-
filling word as the source of the speaker’s uncertainty.

Before training our prediction models, we filter out utter-
ances in the corpus that contain more than one gap. (120 of the
600 utterances have two or three gaps.) We train the models
on prosodic features from only the correct target word/context
segmentations.

To ensure that our models will make predictions for unseen
speakers during testing, each ‘model’ that we train is actually
a collection of 20 prediction models, one for each subset of 19
speakers. (The corpus contains speech data from 20 speakers.)
When making predictions for an utterance in the test set, we
use the corresponding model whose training data includes no
utterances from that particular speaker.

3.1. Non-prosodic features

We train a prediction model on non-prosodic features to serve as
a baseline for the models that we train on prosodic features. We

1http://www.cs.waikato.ac.nz/ml/weka/

assume that words that contain more syllables and words that
are infrequent or previously unseen will generally take longer
to speak aloud than words of shorter length and higher fre-
quency or familiarity. We want to ensure that the predictions
our prosodic models make are not able to be explained by these
features or by part-of-speech or position features.

Our non-prosodic model has 20 features. The part-of-
speech features include binary features for the possible parts-
of-speech of the target word and of its immediately preceding
word. Utterance position is represented as the utterance’s or-
dinal position among the sequence of items (the order varied
for each speaker). Word position features include the target
word’s index from the start of the utterance, index from the
end, and relative position (index from start/total words in utter-
ance). The word length features include the number of charac-
ters, phonemes, and syllables in the target word. To account for
familiarity, we include a feature for how many times during the
experiment the speaker has previously uttered the target word.
To approximate word frequency, we use the log-probability
based on British National Corpus counts where available. For
words that do not appear in the British National corpus, we es-
timate feature values by using web-based counts (Google hits)
to interpolate unigram frequencies. It has been demonstrated
that using web-based counts is a reliable method for estimating
unseen n-gram frequencies [12].

3.2. Prosodic features

Table 1 lists the 20 prosodic feature-types that we extract
from each whole utterance, context, and target word using
WaveSurfer2 and Praat3 (resulting in 60 prosodic features).
These feature-types are comparable to those used in past level-
of-certainty prediction experiments [3] [4]. The pitch and inten-
sity features are represented as z-scores normalized by speaker;
the temporal features are not normalized. The f0 contour is ex-
tracted using WaveSurfer’s ESPS method. We use the ratio of
voiced frames to total frames as an approximation of the speak-
ing rate.

Pitch min f0 relative position min f0
max f0 relative position max f0
mean f0 absolute slope (Hz)
stdev f0 absolute slope (Semi)
range f0

Intensity min RMS relative position min RMS
max RMS relative position max RMS
mean RMS stdev RMS

Temporal total silence percent silence
total duration speaking duration
speaking rate

Table 1: Prosodic feature-types extracted from each whole ut-
terance, context, and target word.

3.3. Combination Feature Set

We create a ‘combination’ set of 20 features based on our corre-
lation results from previous work [10] (see Section 2). Table 2
illustrates how the combination set is created: for each prosodic
feature-type (each row in the table) we choose either the whole

2http://www.speech.kth.se/wavesurfer/
3http://www.fon.hum.uva.nl/praat/
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utterance feature, the context feature, or the target word feature,
whichever one has the strongest correlation with perceived level
of certainty. The selected features (highlighted in Table 2) are
listed below.

1. Whole Utterance: total silence, total duration, speaking
duration, relative position max f0, relative position max
RMS, absolute slope (Hz), absolute slope (semitones)

2. Context: min f0, max f0, mean f0, stdev f0, range f0,
min RMS, max RMS, mean RMS, relative position min
RMS

3. Target Word: percent silence, speaking rate, relative
position min f0, stdev RMS

Correlations with Perceived Level of Certainty

Feature-type Whole Utterance Context Target Word

min f0 0.107 0.119 0.041
max f0 −0.073 −0.153 −0.045
mean f0 0.033 0.070 −0.004
stdev f0 −0.035 −0.047 −0.043
range f0 −0.128 −0.211 −0.075
rel. position min f0 0.042 0.022 0.046

rel. position max f0 0.015 0.008 0.001
abs. slope f0 (Hz) 0.275 0.180 0.191
abs. slope f0 (Semi) 0.160 0.147 0.002
min RMS 0.101 0.172 0.027
max RMS −0.091 −0.110 −0.034
mean RMS −0.012 0.039 −0.031
stdev RMS −0.002 −0.003 −0.019

rel. position min RMS 0.101 0.172 0.027
rel. position max RMS −0.039 −0.028 −0.007
total silence −0.643 −0.507 −0.495
percent silence −0.455 −0.225 −0.532

total duration −0.592 −0.502 −0.590
speaking duration −0.430 −0.390 −0.386
speaking rate 0.090 0.014 0.136

1

Table 2: The Combination feature set (highlighted in table) is
produced by selecting either the whole utterance feature, the
context feature, or the target word feature for each prosodic
feature-type, whichever one is most strongly correlated with
perceived level of certainty.

3.4. Experiment Feature Sets

In our experiment, we train models on six sets of prosodic fea-
tures. The Target Word set contains the 20 prosodic feature-
types (see Table 1) extracted from the target word region. Like-
wise, the Context set contains the 20 prosodic feature-types ex-
tracted from the context region. We do not have an Utterance
feature set because the prosodic features from the utterance have
the same values in the correct segmentation and the control seg-
mentation. The Target Word, Context, Utterance set contains
all 60 prosodic features. The Target Word, Utterance set is the
union the 20 target word features and the 20 utterance features.
The Combination (Target Word, Context, Utterance) set con-
tains 20 prosodic features: a mixture of context, target word,
and utterance features (see Section 3.3). The Combination (Tar-
get Word) set contains only the four target word features from
the combination set.

We also train models on two feature sets containing both
prosodic and non-prosodic features. The Target Word, Non-
prosodic feature set is the union of the 20 target word features

and the 20 non-prosodic features. The Target Word, Con-
text, Utterance, Non-prosodic feature set is the union of all 60
prosodic features and the 20 non-prosodic features.

4. Results
Our models yield accuracies as high as 91% on the task of iden-
tifying the word or phrase causing uncertainty when choosing
between the actual word and a control word. The experiments
were run using models trained on subsets of the whole corpus
(see Section 3) and tested on the 43 utterances that have a per-
ceived level of certainty less than 2.5 and contain a suitable con-
trol word.

Table 3 shows the linear regression and support vector ma-
chine detection accuracies. The models trained on the non-
prosodic features provide a baseline from which to compare
the performance of the models trained on prosodic features.
This baseline accuracy is 67% for both the linear regression and
SVM models.

The linear regression model trained on the target word fea-
ture set had the highest accuracy among all the prosodic models,
86%. The highest overall accuracy, 91%, was achieved on the
linear regression model trained on the target word features plus
the non-prosodic features from the baseline set.

The support vector machine model trained on the target
word feature set had an accuracy of 79%. This was the second
highest accuracy among the SVM models. The SVM model
with the highest accuracy, 81%, was the one trained on all of
the prosodic features (all the context, target word, and utter-
ance features). For these two SVM models, the addition of the
non-prosodic features from the baseline set had no effect on the
accuracy.

5. Discussion
This experiment shows that sub-utterance prosodic features
are useful in detecting uncertainty at the word-level. Our
best model, the linear regression model that uses target word
prosodic features plus the non-prosodic features from the base-
line set, identifies the correct word 91% of the time whereas the
linear regression baseline model using only non-prosodic fea-
tures is accurate just 67% of the time. This is an absolute dif-
ference of 23% and an error reduction of 71%. The best SVM
model, trained on all the prosodic features, has an accuracy 14%
above the SVM baseline, an error reduction of 43%. These large
improvements over the non-prosodic baseline models imply that
sub-utterance prosodic features are crucial in word-level uncer-
tainty detection.

In creating the non-prosodic feature set for this experiment
we wanted to account for the most obvious differences between
the target words and the control words. The baseline model’s
low accuracy on this task is to be expected because the non-
prosodic features are not good at explaining the variance in the
response variable (perceived level of certainty): the correlation
coefficient for the baseline linear regression model is only 0.27
(as a comparison, the coefficient for the target word linear re-
gression model is 0.67).

The combination feature set, which in our past work had
high accuracy in classifying an utterance’s overall level of cer-
tainty [4], did not perform as well as the other feature sets
for this detection task. We speculate that this may have to do
with the context features. While the prosodic features we ex-
tracted from the context are beneficial in classifying an utter-
ance’s overall level of certainty, the low accuracies for the con-
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Table 3: Accuracies on the task of identifying the word or phrase causing uncertainty when choosing between the actual word and a
control word. Experiments were run on both linear regression and support vector machine models. The linear regression model that
was trained on the set of target word features and non-prosodic features achieves 91% accuracy.

Number of Linear Regression Support Vector Machine
Feature Set Features Detection Accuracy Detection Accuracy

Non-prosodic (baseline) 20 67.44% 67.44%

Target Word, Non-prosodic 40 90.70% 79.07%
Target Word 20 86.05% 79.07%
Target Word, Context, Utterance 60 79.07% 81.40%
Target Word, Context, Utterance, Non-prosodic 80 76.74% 81.40%
Target Word, Utterance 40 69.77% 72.09%
Combination Set (Target Word) 4 72.09% 67.44%
Combination Set (Target Word, Context, Utterance) 20 72.09% 53.49%
Context 20 48.84% 27.91%

text feature set in Table 3 suggest that they are detrimental in
determining which word a speaker is uncertain about, using our
proposed method. The task we examine in this paper, distin-
guishing the actual ‘target word’ from a control word, is dif-
ferent than the task the models are trained on (predicting a real-
valued level of certainty), therefore we do not expect the models
with the highest classification accuracy to necessarily perform
well on the task of identifying the word causing uncertainty.

It is not clear which model type, linear regression or support
vector machine regression, is better suited for the general task
of identifying uncertain words within an utterance. Among all
the models we trained, the two with the highest accuracies were
both linear regression models (one with only prosodic features
and one with a mixture of prosodic and non-prosodic features).
However, the SVM models yielded higher accuracies than the
linear regression models for three of the eight sets of features
examined.

6. Conclusion
We built level-of-certainty prediction models that take utterance
and sub-utterance prosodic features and non-prosodic features
as input. Using these models, we compared the predicted level
of certainty using the correct ‘target word’ segmentation with
the predicted level using an alternate segmentation with a con-
trol word as the proposed target word. On the task of identifying
the correct segmentation, our best linear regression and SVM
models achieve error reductions of 71% and 43%, respectively,
over the baseline models trained on only non-prosodic features.
These results imply that prosodic information is crucial in iden-
tifying uncertain words within an utterance.

The experiment described in this paper is an initial step to-
wards understanding whether prosodic information can be used
more generally to determine which word or phrase within an ut-
terance, among all candidate words and phrases, is the cause of
a speaker’s uncertainty. Since our prediction model was able to
choose the correct target word over the control word 91% of the
time we have reason to believe that this method of using predic-
tion models trained on sub-utterance prosodic features will be
successful in the more general setting.

7. Acknowledgements
This work was supported in part by a National Defense Science
and Engineering Graduate Fellowship. We thank the reviewers

for their helpful comments.

8. References
[1] J. Ang, R. Dhillon, A. Krupski, E. Shriberg, and A. Stolcke,

“Prosody-based automatic detection of annoyance and frustration
in human-computer dialog,” in Proceedings of the International
Conference on Spoken Language Processing, Denver, CO, 2002,
pp. 2037–2040.

[2] C. M. Lee and S. Narayanan, “Towards detecting emotions in spo-
ken dialogs,” IEEE Transactions on Speech and Audio Processing,
vol. 13, no. 2, pp. 293–303, 2005.

[3] J. Liscombe, J. Hirschberg, and J. Venditti, “Detecting certain-
ness in spoken tutorial dialogues,” in Proceedings of Eurospeech,
Lisbon, Portugal, 2005.

[4] H. Pon-Barry and S. Shieber, “The importance of sub-utterance
prosody in predicting level of certainty,” in Proceedings of
NAACL-HLT, Boulder, CO, June 2009.

[5] E. Krahmer and M. Swerts, “How children and adults produce
and perceive uncertainty in audiovisual speech,” Language and
Speech, vol. 48, no. 1, pp. 29–53, 2005.

[6] H. Pon-Barry, K. Schultz, E. Bratt, B. Clark, and S. Peters, “Re-
sponding to student uncertainty in spoken tutorial dialogue sys-
tems,” International Journal of Artificial Intelligence in Educa-
tion, vol. 16, pp. 171–194, 2006.

[7] K. Forbes-Riley, D. Litman, and M. Rotaru, “Responding to stu-
dent uncertainty during computer tutoring: a preliminary evalua-
tion,” in Proceedings of the 9th International Conference on In-
telligent Tutoring Systems, Montreal, Canada, 2008.

[8] T. Paek and Y.-C. Ju, “Accommodating explicit user expressions
of uncertainty in voice search or something like that,” in Proceed-
ings of Interspeech, Brisbane, Australia, September 2008.

[9] A. Alwan, Y. Bai, M. Black, L. Casey, M. Gerosa, M. Her-
itage, M. Iseli, B. Jones, A. Kazemzadeh, S. Lee, S. Narayanan,
P. Price, J. Tepperman, and S. Wang, “A system for technology
based assessment of language and literacy in young children: the
role of multiple information sources,” in Proceedings of IEEE In-
ternational Workshop on Multimedia Signal Processing, Chania,
Greece, 2007, pp. 26–30.

[10] H. Pon-Barry, “Prosodic manifestations of confidence and uncer-
tainty in spoken language,” in Proceedings of Interspeech, Bris-
bane, Australia, September 2008, pp. 74–77.

[11] T. Joachims, “Making large-scale support vector machine learn-
ing practical,” in Advances in Kernel Methods: Support Vector
Machines.

[12] F. Keller and M. Lapata, “Using the web to obtain frequencies for
unseen bigrams,” Computational Linguistics, vol. 29, no. 3, pp.
459–484, 2003.

1582


