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Abstract
Prosody-based affect recognition has great potential impact for
building adaptive speech interfaces. For example, in intelligent
systems for personalized learning, sensing a student’s level of
certainty, which is often signaled prosodically, is one of the
most interesting states to interpret and respond to. However, ro-
bust uncertainty recognition faces several challenges, including
the lack of gold-standard labels, and differences in expressivity
among speakers. In this paper we explore the intersection of
these two issues. We have collected a corpus of spontaneous
speech in a question-answering task. Three kinds of certainty
labels are associated with each utterance. First, speakers rated
their own level of certainty. Second, a panel of listeners rated
how certain the speaker sounded. Third, an externally crowd-
sourced difficulty score is generated for each stimulus (the ques-
tion). We present a word-level prosodic analysis of individual
speaking styles, as they relate to these three different measure-
ments of certainty. Our results suggest that instead of learning
one-size-fits-all prosodic models of affect, we might find im-
provement from learning multiple models corresponding to dif-
ferent speaking styles.

Index Terms: Uncertainty, affect recognition, affect labels,
speaking style.

1. Introduction
An exciting goal in human-computer interaction is that of
adding human-level emotional behavior to intelligent systems,
that is, the ability to perceive a user’s emotional state and adap-
tively respond to it [1]. In speech systems in particular, there has
been a lot of work in recent years on detecting a broad spectrum
of affective states in speech, including basic emotions [2, 3, 4],
frustration [5], charisma [6], uncertainty [7, 8, 9], sleepiness
and intoxication [10], and interpersonal stance [11].

There are multiple ways of measuring a speaker’s level of
certainty. In the existing work on automatic emotion recogni-
tion, the most common approach is to measure perceived emo-
tion, as annotated by one or more human listeners, producing la-
bels that are by definition subjective [12]. While we treat these
labels as a gold standard, we understanding that the subjectiv-
ity makes for a challenging classification problem [13]. On
the other hand, we can consider self-reported certainty, when
speakers are asked to rate their own level of certainty. In our
prior work, we found that perceived certainty was often higher
than self-reported certainty [9]. In the same vein, related work
on interpersonal stance (friendliness, flirtatiousness, etc.) found
that in conversation dyads, self-reported affect was not strongly
correlated with perceived affect [11]. In applications such as
spoken dialogue systems for tutoring students, we are most in-
terested in knowing a student’s internal level of certainty.

Prior work has not addressed the question of whether the
annotator perceptions or self-reports are an accurate reflection
of internal certainty. There is no way to precisely measure in-
ternal certainty, but we attempt to address this issue by eliciting
speech in a question-answering setting with materials that we
hypothesize to be consistently easy or difficult for all individ-
uals. We then generate difficulty scores for each stimulus via
crowdsourcing.

In this paper, we present an exploratory analysis of the
prosodic characteristics of individual speakers. We find that
some speakers produce consistent prosodic expressions of their
certainty level, mostly in their pitch, while other speakers show
highly inconsistent patterns of speech. Our methodology in-
volves extracting short audio segments of individual words from
spoken answers to questions that varying in the speaker’s level
of certainty. Similar to recent work that has applied principal
components analysis (PCA) to large sets of low-level acoustic-
prosodic features [14], we identify a set of 10 principal compo-
nents from a large set of word-level prosodic features. We then
use the smaller set of prosodic features to learn several decision
trees for each speaker and analyze the manner and consistency
of prosodic expression as a way to gauage individual speaking
styles.

2. Harvard Uncertainty Speech Corpus
The speech data that we use in this experiment comes from
the Harvard Uncertainty Speech Corpus. This section gives an
overview of the Harvard Uncertainty Speech Corpus (Section
2.1), the speech elicitation process (Section 2.2), and the meth-
ods of annotating and approximating speaker certainty from
the hearer’s perspective (Section 2.3), the speaker’s perspective
(Section 2.4), and according the difficulty of the question (Sec-
tion 2.5).

2.1. Speech Data from Uncertainty Corpus

The Harvard Uncertainty Speech Corpus contains spoken ut-
terances and level of certainty annotations from three question-
answering domains [15]. In this paper, we use the handwritten
digit section of corpus. The utterances were recorded in a lab,
in a question-answering setting. The questions and answers are
of the form below.

Q: Which train leaves Los Angeles and at what time does it
leave?

A: Train seven leaves Los Angeles at 1:27.

In this experiment, we examine the first two words of such ut-
terances, for example, “train seven” or “train two”.

The Harvard Uncertainty Speech Corpus contains the au-
dio corresponding the to answers (not the questions). A notable



feature of the utterances in the corpus is that when a speaker is
uncertain, the uncertainty can be attributed to a particular word
or phrase in the utterance. The entrire corpus contains 1700 ut-
terances, roughly 150 minutes of speech. The handwritten digit
section of the corpus contains 1100 utterances, about 90 min-
utes of speech. Detailed descriptions of the corpus are available
in previously published works [9, 16].

2.2. Background on Method of Speech Elicitation

The speech elicitation materials are designed in a way that con-
trols the difficulty of the stimulus. This is achieved by ask-
ing participants to engage in a task that necessitates speaking
a spontaneous utterance that incorporates reading handwritten
digits that vary in how legible they are. The digit images are
drawn from the MNIST database of handwritten digits [17].
The materials for eliciting speech are designed so that partic-
ipants would speak the selected MNIST digit aloud in the con-
text of answering a question. The handwritten digit images are
embedded in illustrations of train routes connecting two U.S.
cities, where the handwritten digits indicate the train number.
An example illustration is shown in Figure 1.

Figure 1: Example speech elicitation illustration featuring an
ambiguous handwritten digit image, the train number.

We collected speech from twenty-two native English speak-
ers. At the start of the data collection experiment, participants
read a task scenario explaining why they are deciphering hand-
written train conductor notes and answering questions about
them. For each train route illustration, participants are asked a
single question. The participants respond aloud, speaking spon-
taneously. Their word choice is influenced by a warm-up task
where they are given answers to read aloud. This lets us have
influence over the length and lexical content of the utterances
without the participant explicitly reading aloud.

The method for eliciting uncertain speech is a modification
the method used in a previous collection of affective speech [9].
In that work, we did not attempt to control the speaker’s level
of certainty. As a result, there was no way to verify whether a
speaker’s self-reported level of certainty was an accurate reflec-
tion of his or her actual certainty.

2.3. Certainty Labels from Hearer’s Perspective

Each utterance in the corpus is annotated with the level of cer-
tainty from a hearer’s perspective. We collected annotations
from a panel of six human judges. Every annotator listened to
and rated the entire set of 1100 utterances. They rated level of
certainty on a 1 to 5 scale (1 = very uncertain, 5 = very certain).

They did not see any contextual information such as the hand-
written images. For each utterance, we consider the mode (aver-
age) of the six annotator labels to be the certainty label from the
hearer’s perspective. The distribution of certainty labels from
the hearer’s perspective in the corpus is shown in Figure 2.

The agreement among the six annotators highlights the sub-
jective nature of the hearer-centric affect labeling paradigm.
Across all pairs of annotators, we find an average pairwise
agreement of 54.3%, average Cohen’s kappa of 0.235, and av-
erage Spearman correlation coefficient of 0.494. If we look
only at the pair of annotators with the highest agreement, we
see much higher values: pairwise agreement of 74.1%, Cohen’s
kappa of 0.407, and Spearman correlation of 0.62.

2.4. Certainty Labels from Speaker’s Perspective

Each utterance in the corpus is annotated with the level of cer-
tainty from the speaker’s perspective. The speakers are asked,
“How certain were you about the answer you just gave?” during
the speech elicitation process. They rate their level of certainty
on a 1 to 5 scale (1=very uncertain, 5=very certain). The distri-
bution of certainty labels from the speaker’s perspective in the
corpus is shown in Figure 2.

2.5. Certainty Labels from Image Difficulty Score

We attempt to control the speaker’s actual level of certainty by
designing stimuli that are uniformly difficult or easy and we
then use crowdsourcing to obtain a difficulty score for each
stimulus. Each utterance in the corpus has a legibility score as-
sociated with the handwritten digit (the train number) that was
used to prompt the question. We used Amazon’s Mechanical
Turk [18, 19] to collect human judgements from which we gen-
erate image legibility scores. Mechanical Turk is an online la-
bor market that facilitates the assignment of human workers to
quick and discrete human intelligence tasks (HITs). We showed
Turkers a digit image and instructed them to identify the digit
using a drop-down menu. Each digit was labeled by 100 human
workers. Details of the HIT design are available in previously
published work [16].

The legibility score for each image is defined as 1 minus
the Shannon entropy of the human label distribution:

Legibility = 1−
[
−

N∑
i=1

P (xi)logP (xi)
]

Thus, scores fall in the range [0,1]. A score of 1 has an en-
tropy of 0 and indicates high legibility (all 100 people choose
the same label). The handwritten digit in Figure 1 has a legibil-
ity score of 0.75. The distribution of difficulty scores (legibility
scores) for the stimuli used in eliciting the speech data is shown
in Figure 2.

3. Experiment and Results
In this experiment we analyze the speaking styles of individ-
ual speakers. We explore whether these individuals are prosod-
ically expressive regarding level of certainty, and if they dis-
play consistency in their prosodic expression. Because of de-
sign of the corpus, each speaker utters phrases such as “train
one” or “train two” multiple times, with differing levels of cer-
tainty. Figure 3 shows the spectrograms of three utterances
from the same speaker saying “train two” while feeling uncer-
tain, neutral, and certain. Because the corpus contains such sets
of lexically-identical phrases, in this experiment we compare



Figure 2: Three histograms: (left) distribution of difficulty scores for the stimuli that prompted the utterances in the corpus, (middle)
distribution of certainty labels from the speaker’s perspective, (right) distribution of certainty labels from the hearer’s perspective.

word-level prosodic features. However, of the ten possible dig-
its, only some are repeated with enough frequency to be ana-
lyzed. From the larger corpus, we identify a set of speakers and
digits such that,

• each speaker utters each digit 3 or more times, and

• for each speaker-digit combination, the certainty labels
are distributed among certain, neutral, and uncertain.

This yields a set of 408 utterances representing eight speakers
and six digits. Table 1 shows the utterance counts for these eight
speakers. For example, in our corpus, speaker a says “train one”
five times and says “train two” eight times.

Table 1: Number of utterances that contain the phrases, “train
one”, “train two”, “train three”, “train five”, “train seven”, and
“train nine”, for a subset of speakers in the corpus.

Num instances of “train. . . ” per speaker

Speaker one two three five seven nine Total

a 5 8 4 7 8 8 40
b 4 8 6 6 9 10 43
c 4 11 4 6 6 12 43
d 3 8 5 6 8 12 42
e 3 10 5 6 7 8 39
f 4 7 7 5 7 11 41
g 3 6 5 6 9 8 37
h 6 7 3 7 9 7 39

3.1. Unit of Analysis

Because the corpus contains repeated instances of specific
words, spoken with different levels of certainty, we perform
prosodic analysis at the word level. The segments of interest
are the train numbers, which correspond to the MNIST hand-
written digits. The word-level audio segments are generated
semi-automatically. We use the CMU Sphinx speech recogni-
tion toolkit to automatically transcribe each utterance and gen-
erate word alignments. The audio segments are manually veri-
fied and errors are manually corrected.

3.2. Prosodic features

Initially, we extract 230 prosodic features from each audio seg-
ment. We use the openSMILE feature extraction toolkit [20]
with the emobase config file. The features include low-level
descriptors (F0, F0-envelope, intensity, loudness, voice quality,

and zero-crossing rate), functionals, and delta regression coeffi-
cients for smoothed feature contours.

We use principal component analysis to identify 10 princi-
pal prosodic components of the digit word segments in our data
(using the entire corpus—word segments from all utterances of
all speakers). PCA is performed using the WEKA toolkit [21].
The ranked results are aggregated and a set of 10 principal com-
ponents are identified for further analysis. The resulting 10 fea-
tures are listed below (delta features indicated by d).

1. F0 averaged

2. F0 ranged

3. F0 sloped

4. F0 skewnessd

5. F0 envelope maxd

6. Intensity averaged

7. Intensity skewnessd

8. Intensity minimum

9. Probability of voicingd

10. Zero-crossing rated

3.3. Speaker analysis

In order to understand how these features are related in pre-
dicting the level of uncertainty in utterances, we have made
use of decision tree learning. Considering certainty labels from
the speaker’s perspective (3 classes), we learn separate deci-
sion tree classifiers for each speaker-word combination. That
is, we learn a decision tree for [speaker = a, word = “one”],
[speaker = a, word = “two”], and so on. In total, we learn six
decision trees for each speaker. The maximum depth of decision
trees is 3. We used the WEKA toolkit [21] implementation of
C4.5 algorithm (J48).

For each speaker, we evaluate whether the learned decision
criteria are consistent across all six words. In other words, we
ask: for speaker a, are the informative prosodic features con-
sistent for the word “one”, the word “two”, the word “three”
and so on. We then do the same analysis for certainty labels
from the hearer’s perspective, and for the difficulty score ap-
proximation of certainty. Table 2 shows the speaker-specific
consistency results. The 10 prosodic features are collapsed into
three groups: pitch (#1-#5), intensity (#6-#8), and voice (#9-
#10). Separate results are shown for the three approximations
of certainty: labels from the speaker’s perspective, labels from
the hearer’s perspective, and difficulty of the question (legibility
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Figure 3: Three instances of a single speaker saying “train two”
with varying affect: certain (top), neutral (middle) and uncertain
(bottom). The pitch estimate (blue line) is overlaid atop the
spectrogram.

score). For speakers that used consistent modes of prosodic ex-
pression, checkmarks indicate the class of prosodic feature that
distinguished the certain, neutral, and uncertain words.

4. Discussion
We see two primary observations from this exploratory anal-
ysis. First, among the prosodic features that we analyzed,
features related to pitch are the strongest differentiators be-
tween certain and uncertain affect, voice features are second
strongest. Second, this analysis, though preliminary, suggests
that some speakers consistently display their certainty through
their prosody while others are inconsistent. We hypothesized
that inconsistent speakers would be inconsistent across all three
certainty metrics (speaker, hearer, and legibility). The results
show only a small amount of support for this: speakers f and h
are inconsistent under both the speaker and hearer metrics. The
fact that there is no overlap between the inconsistent speakers
in the bottom section of Table 2 and the other two sections indi-
cates that the difficulty score metric may be too coarsely defined

Table 2: Speaker-specific prosodic modes for conveying uncer-
tainty. Certainty is approximated in three ways: the speaker’s
perspective, the hearer’s perspective, and the difficulty of the
question.

Speaker

a b c d e f g h

Certainty labels: speaker
Pitch X X X X
Intensity X
Voice X X X
Inconsistent 7 7 7 7

Certainty labels: hearer
Pitch X X X X
Intensity
Voice X
Inconsistent 7 7 7 7

Difficulty of question
Pitch X X X X X X
Intensity
Voice
Inconsistent 7 7

(with two binary classes), or that it may not be as aligned with
speaker and hearer certainty labels as we had posited.

We see that some speakers, e.g., speakers a and c, have
similar manners of conveying certainty. Our next steps involve
a clustering analysis to explore whether natural clusters can ex-
plain the variation seen among those speakers who convey their
certainty in their prosody.

5. Conclusion

This paper presents an exploratory analysis of the prosodic char-
acteristics of individual speaking styles, as they relate to three
different measurements of certainty. We find that some speak-
ers have consistent ways of conveying their level of certainty
prosodically, while other speakers are inconsistent. Among the
prosodic signals, pitch-related features are the strongest. Across
the three different measures of certainty: speaker’s perspective,
hearer’s perspective, and item difficulty, we find more varying
speaker behaviors, suggesting the need for further analysis.

This work is of broad relevance to researchers studying af-
fect recognition. Robustly recognizing affect, and especially
subtle affective-cognitive states such as uncertainty, faces many
challenges. It is not surprising that speakers have different ways
of prosodically expressing affect. In this paper, we show that
some speakers produce consistent prosodic signals of certainty,
mostly in their pitch, while other speakers show highly incon-
sistent patterns of speech. Instead of using the same techniques
for detecting affect in all speakers, there is great potential util-
ity in adaptive affect detection. For example, if a person is very
inconsistent in their speech signals, then an intelligent, multi-
modal system should direct its inference efforts toward signals
from other modalities such as lexical content or facial expres-
sions. On the other hand, if a speaker is prosodically expres-
sive, adaptive systems in the future may dynamically determine
which prosodic signals to weight more strongly.



6. References
[1] R. Cowie, E. Douglas-Cowie, N. Tsapatsoulis, G. Votsis,

S. Kollias, W. Fellenz, and J. Taylor, “Emotion recogni-
tion in human-computer interaction,” Signal Processing
Magazine, IEEE, vol. 18, no. 1, pp. 32–80, January 2001.

[2] C. M. Lee and S. Narayanan, “Towards detecting emo-
tions in spoken dialogs,” IEEE Transactions on Speech
and Audio Processing, vol. 13, no. 2, pp. 293–303, 2005.

[3] R. Fernandez and R. Picard, “Classical and novel discrim-
inant features for affect recognition from speech,” in Pro-
ceedings of Interspeech, Lisbon, Portugal, 2005, pp. 473–
476.

[4] B. Schuller, A. Batliner, S. Steidl, and D. Seppi, “Recog-
nising realistic emotions and affect in speech: State of
the art and lessons learnt from the first challenge,” Speech
Communication, vol. 53, pp. 1062–1087, 2011.

[5] J. Ang, R. Dhillon, A. Krupski, E. Shriberg, and A. Stol-
cke, “Prosody-based automatic detection of annoyance
and frustration in human-computer dialog,” in Proceed-
ings of the International Conference on Spoken Language
Processing, Denver, CO, 2002, pp. 2037–2040.

[6] A. Rosenberg and J. Hirschberg, “Acoustic/prosodic and
lexical correlates of charismatic speech,” in Proceedings
of Interspeech, 2005, pp. 513–516.

[7] J. Liscombe, J. Hirschberg, and J. Venditti, “Detecting cer-
tainness in spoken tutorial dialogues,” in Proceedings of
Interspeech, Lisbon, Portugal, 2005, pp. 1837–1840.

[8] H. Pon-Barry, “Prosodic manifestations of confidence and
uncertainty in spoken language,” in Proceedings of Inter-
speech, Brisbane, Australia, 2008, pp. 74–77.

[9] H. Pon-Barry and S. M. Shieber, “Recognizing uncer-
tainty in speech,” EURASIP Journal on Advances in Sig-
nal Processing, vol. 2011, no. 251753, 2011.

[10] B. Schuller, A. Batliner, S. Steidl, F. Schiel, and J. Kra-
jewski, “The Interspeech 2011 speaker state challenge,”
in Proceedings of Interspeech, 2011, pp. 3201–3204.

[11] R. Ranganath, D. Jurafsky, and D. A. McFarland, “De-
tecting friendly, flirtatious, awkward, and assertive speech
in speed-dates,” Computer Speech and Language, vol. 27,
no. 1, pp. 89–115, 2012.

[12] Z. Zeng, M. Pantic, G. I. Roisman, and T. S. Huang, “A
survey of affect recognition methods: Audio, visual, and
spontaneous expressions,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 31, no. 1, pp. 39–
58, 2009.

[13] L. Devillers, L. Vidrascu, and L. Lamel, “Challenges in
real-life emotion annotation and machine learning based
detection,” Neural Networks, vol. 18, no. 4, pp. 407–422,
2005.

[14] N. G. Ward and A. Vega, “A bottom-up exploration of the
dimensions of dialog state in spoken interaction,” in Pro-
ceedings of the 13th Annual Meeting of the Special Inter-
est Group on Discourse and Dialogue, Seoul, South Ko-
rea, 2012, pp. 198–206.

[15] H. Pon-Barry, S. M. Shieber, and N. Longenbaugh, “Elic-
iting and annotating uncertainty in spoken language,” in
Proceedings of the 9th International Language Resources
and Evaluation Conference (LREC), 2014.

[16] H. Pon-Barry, “Inferring speaker affect in spoken natu-
ral language communication,” Ph.D. dissertation, Harvard
University, 2013.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–
2324, November 1998.

[18] G. Paolacci, J. Chandler, and P. G. Ipeirotis, “Running ex-
periments on Amazon Mechanical Turk,” Judgment and
Decision Making, vol. 5, no. 5, pp. 411–419, 2010.

[19] W. Mason and S. Suri, “Conducting behavioral re-
search on Amazon’s Mechanical Turk,” Behavior Re-
search Methods, vol. 44, pp. 1–23, 2011.
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