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Abstract. Scalability and reusability of tutorial dialogue systems is a function of the 
corresponding characteristics in their component tutoring and dialogue technologies. 
This paper discusses an architecture for a scalable, reusable spoken conversational 
tutor, SCoT. With this design we hope to minimize the efforts needed to reuse the 
components for implementing a tutor in any domain, large or small. 

 
 
Introduction 
 
This paper discusses an architecture for a scalable, reusable spoken conversational tutor 
(SCoT), and one specific instantiation of it—SCoT-DC, which engages students in a spoken 
discussion of their solutions to problems of controlling damage aboard a ship. Although the 
subject matter knowledge that a tutoring system utilizes can usually not be employed in 
teaching a different subject, many tutorial techniques are largely reusable across subject 
domains. From the beginning of the system's design, an important goal was to achieve 
significant independence from subject matter and from tutoring-specific aspects of spoken 
dialogue. We describe here the approaches taken to achieve this goal, and assess the ways and 
the extent to which the effort has succeeded. 
 Broadly speaking, our approach has been to abstract out tasks such as detecting whether a 
tutor's interlocutor possesses a given piece of knowledge, is ignorant of it, or holds a distorted 
form of that knowledge. We also abstract methods a tutor could employ for addressing gaps or 
confusions in knowledge, and for reinforcing a student's acquisition of correct knowledge. 
Likewise we abstract strategies for deploying these tools in a tutoring session, and tactics for 
reacting to a student's immediate needs during a session. Dialogue systems also utilize 
linguistic and communicative knowledge, which may be symbolically represented in a fashion 
that is relatively independent of any particular use and domain. These abstractions and their 
uses in tutoring are formally modelled as a joint activity [1] engaged in by tutor and student. 
 The rest of this paper is organized as follows.  Section 1 describes in greater detail how 
the tutor is designed and how it makes use of subject matter knowledge and of spoken 
communication with a student. Section 2 describes a general purpose dialogue manager which 
handles multi-modal, mixed initiative dialogue. Section 3 describes how we facilitate natural 
language understanding and generation, both the techniques and technology used. Finally, we 
describe in Section 4 our framework for knowledge representation. 
 

                     
1 This work is supported by the Department of the Navy under research grant N000140010660, a multi-disciplinary university research 
initiative on natural language interaction with intelligent tutoring systems. To see a demo or get more information please go to 
http://www-csli.stanford.edu/semlab/muri/. 



1. Tutor 
 
1.1 Overview 
 
In this section, we describe the components of our tutoring model that enable SCoT to 
develop global plans for reflective tutorial dialogue and respond dynamically to student 
spoken input. Crucially, the tutorial expertise modelled by each of these components is 
independent of domain knowledge (Section 4) or conversational intelligence (Section 2). For 
this reason, we suspect that the tutoring model will be reusable in other tutorial domains; e.g., 
mathematics. We begin by laying out some assumptions that have guided our work to date, 
and then turn to the details about our tutoring model. 
 In general, spoken language tutorial dialogue systems must be able to plan sequences of 
atomic actions (questions, answers, feedback), based on higher-level input. Inputs can include 
a problem, the student's solution, domain knowledge, an analysis of the student's spoken input 
(questions, answers, etc.), or a student model. On the basis of this input, the tutor carries out 
planning. For example, the tutor may need to develop an initial overall tutoring plan or a plan 
for responding to a student's incorrect answer.  
 SCoT's tutoring model covers domains (like damage control) that are non-deterministic 
(e.g., actions have unexpected outcomes) and have a dynamic problem state (e.g., a problem 
increases in complexity over time) [2], as well as domains (like mathematics) that are 
deterministic and static. The tutoring model can be divided into two components: strategies 
and tactics. We will briefly discuss both of these components and how they are realized in one 
particular deployment of this model, SCoT-DC. 
 
 
1.2 Tutorial Strategies 
 
The first component of SCoT's tutorial intelligence is strategies. Tutorial strategies are 
methods for constructing an initial plan for post-practice reflective dialogue. SCoT uses 
information in an annotated record of the student's performance in a problem-solving 
session (e.g., a series of physics problems, a session with a damage control simulator) to 
construct an initial overall tutoring plan; i.e., what problems are going to be discussed. Note 
that the initial overall tutoring plan can be dynamically revised during the tutorial dialogue 
(e.g. the student can request that the tutor skip discussion of a particular topic). 
 In our current implementation, SCoT-DC, the tutor uses information from a record of 
the student's performance in a session with the damage control simulator DC-Train [3] to 
create an initial tutorial plan; i.e., what problems (e.g., shipboard crises such as fires) to 
review. Work by Katz et al. [4-5] has shown that reflective tutoring has a positive effect on 
learning and enhances the acquisition of strategic and conceptual knowledge. For these 
reasons, SCoT is reflective (the tutor generates plans for post-practice reflection). 
 SCoT-DC makes a list of exemplar problems that occurred in the student's session with 
DC-Train. If more than one problem of a given type occurred, the tutor picks the one with 
the most errors. The motivation for this particular algorithm is that the student's knowledge 
and misconceptions will be reflected in the errors they make and that exemplar problems 
will make for the most interesting dialogues and create the most opportunities for learning.  
 This initial overall tutorial plan is represented as a tree, and it has three main branches 
corresponding to an initial summary, topics for discussion, and a final summary. In the 
initial summary, the tutor informs the student of how many problems arose, how many were 
resolved, and gives a brief appraisal of the student's performance. For each exemplar 
problem, the tutor introduces it, gestures to the student (e.g. highlighting a location on the 



ship), and with the student jointly reconstructs the observed (what the student did) and ideal 
(what an expert would do) methods of handling the problem by applying its tutorial tactics. 
In the final summary, the tutor comments on the student's strengths and weaknesses, then 
reiterates the most important lessons from the tutorial dialogue. 
 
 
1.3 Tutorial Tactics 
 
The second component of SCoT's tutorial intelligence is a repertoire of tutoring tactics (e.g., 
hinting). Student input, typically in response to a question, will initiate a tutoring tactic. The 
tutor searches the library of tutoring tactics to find all of the tactics whose preconditions are 
satisfied in the current context. Like the plan operators in other systems [6], each tutorial 
tactic has a goal, a set of preconditions and a multi-step recipe [7]. Preconditions are 
currently based on two parameters: the classification of the student's answer in the tutorial 
dialogue and the classification of the student's action in the problem-solving session. 
Recipes are composed of a sequence of actions. Actions in a recipe specify the tutor's 
responses and make updates to the Activity Tree (Section 2.2). They can be primitive 
actions like providing feedback or complex actions like an embedded tutoring tactic.  
 SCoT's tactics are not specific to any one domain. Rather, dialogue with SCoT roughly 
matches the 5-step dialogue frame that Graesser and Person [8] observed in human-to-
human tutoring, given directly below. Step 4 consists of familiar remediation techniques 
like hinting and further prompts to illicit the correct answer. 
 
 Step 1: Tutor asks question (or presents problem) 
 Step 2: Learner answers question (or begins to solve problem) 
 Step 3: Tutor gives short immediate feedback on the quality of the answer  
 Step 4: The tutor and learner collaboratively improve the quality of the answer 
 Step 5: The tutor assesses the learner’s understanding of the answer 
 
The following tactic from SCoT is for responding to a partially correct answer: 
 
Goal: Discuss Partially Correct Answer/Error of Omissions 
Preconditions Recipe 
     Student Answer = Partially Correct      Acknowledge: Muted Praise 
     Student Action = Error of Omission      Hint: Partially Correct Hinting Sequence 
      Appraise: Assert Suboptimal Solution Sequence 
 
 The following example dialogue illustrates how SCoT-DC uses this tactic in tutorial 
interactions. In turn (D) the student gives a partially correct answer ("Send repair two to 
desmoke the compartment")—which is the same as the student’s partially correct action 
from their session with DC-Train, as referenced in (L). In turn (E) the tutor gives an 
acknowledgement ("Almost"). Turns (F-I) correspond to a hinting sequence for partially 
correct answers. In turns (J-L), the tutor explains to the student why the solution offered in 
(D) was not completely right. 
 

 A. Tutor: All right, suppose the fire has been overhauled. 
 B. Tutor: Let's now discuss the resulting smoke. [displays grey color in compartment]  
 C.  Tutor: What should you do first? 
 D.  Student: Send repair two to desmoke the compartment. 
 E.  Tutor: Almost. 
 F.  Tutor: You should send a different repair team. 
 G.  Tutor: Which team should you send instead? 
 H. Student: Repair five. 
 I.  Tutor: Yes, exactly. 



 J.  Tutor: You should order repair five to desmoke the compartment. 
 K.  Tutor: Repair 2 was overtasked, so repair 5 should have been sent. 
 L. Tutor: But you sent the wrong repair team during the session. 

 

 The tutor’s actions are communicated to the Dialogue Manager (Section 2.1) via the 
Activity Tree (Section 2.2) in a domain independent way, as described below. This better 
facilitates not just being able to swap domains with greater ease, but also allows the tutor 
and Dialogue Manager to be as generic as possible. 
 
 
2. Dialogue Manager 
 
Our Dialogue Manager (DM) is developed in the Architecture for Conversational Intelligence 
framework [9]. This architecture was originally used in the WITAS system, a user-driven, 
mixed-initiative dialogue system for controlling a robotic helicopter [10]. The generality of 
the framework in terms of handling dialogue moves in structured discourse has enabled us to 
adopt it for our system-driven, mixed initiative tutoring dialogue system. 
 
 
2.1 Conversational Intelligence 
 
The DM is a domain independent component that handles the Conversational Intelligence 
of the system. It sits between the users and the domain specific Behavioral Agent (BA)—in 
this case the tutor—managing communication. The DM is responsible for interpreting any 
user input as a dialogue move or moves. It then determines the effects on the states of nodes 
in the Activity Tree (Section 2.2). Also, the DM is responsible for turning a dialogue 
activity request by a BA into the appropriate dialogue moves directed towards the user. 
 By separating Conversational Intelligence from Behavioral Intelligence, we focus on 
developing the BA at the activity level. This allows the Conversational Intelligence to be 
independent of any domain specific features as well as being independent from the purpose 
of the conversation. Therefore it is reusable for any dialogue, including discourse other than 
tutoring or robotic control. Not only does this mean that adapting the framework for a new 
domain would require less time and resources, but also any future features that would be 
added for one domain could carry out to other domains as well. The current DM supports 
Conversational Intelligence such as turn management, gesture input/output management, 
handling of syntactically or contextually un-interpretable user input, automatic insertion of 
discourse markers, appropriate pausing between utterances, and utterance aggregation. 
 In SCoT, the DM mainly handles the input/output flow while its subcomponents are 
responsible for specific features of dialogue. For instance the TurnManager implements 
turn-taking algorithms and the SystemAgenda handles utterance priority and utterance 
aggregation. By encapsulating these features into subcomponents, to replace any features 
with domain specific versions can be done easily without changing the DM core. This is 
most relevant for a subcomponent of the DM which needs to be domain specific—the 
subcomponent which helps the DM match user utterances to the appropriate dialogue 
context. This is very important for natural language understanding (Section 3.1). 
 
 
2.2 Activity Tree 
 
The Activity Tree is the communication interface between the core DM and the domain-
specific BA. It provides a way to structurally represent the joint activities of the students 



and the BA. Each node in the tree corresponds to an activity. An activity is categorized into 
two types: complex activity and atomic activity. An atomic activity corresponds to a single 
action supported by the system such as a question/answer pair, an explanation, a hint, or 
GUI manipulations (gestures to the user). A complex activity, on the other hand, could 
contain other sub activities both of complex and atomic type. The communication is done 
by basic Activity Tree manipulation which is one of the following: 1) changing the state of 
some activities, 2) adding new activities, 3) deleting some activities, or 4) reordering 
activities. These manipulations are generic and independent of any single domain. 
 Each activity node is in one of the following defined states: planned, current, done, or 
cancelled. Each node also has activity properties which contain domain dependent 
information. This domain specific information is used mainly by the BA, but also for some 
context matching in the DM. Additionally, both the DM and the BA can add a node to the 
Activity Tree, to propose a new joint activity. The Activity Tree also provides the ability for 
both parties to navigate the conversation tree, such as reviewing old activities, or skipping 
certain activities. 
 In general, the Conversational Intelligence of the DM only needs to understand the 
activity at an abstract level, e.g. the state of the activity, in order to perform the appropriate 
dialogue move, such as moving on to the next topic of the conversation. This means that the 
BA, regardless of the domain, only needs to provide high level information about its 
activity model, in order to take the advantage of the Conversational Intelligence provided by 
the DM. The BA might also need to provide certain high level domain dependent context 
for the activity in order for the DM to carry out appropriate dialogue moves, but this domain 
specific information need not be complex and would only be used by a specialized DM 
subcomponent, with no effect on DM behavior for other domains. 
 
 
3. Natural Language 
 
3.1 Natural Language Understanding 
 
Our approach to natural language input to our system is to interpret each utterance fully as a 
logical form (LF), then to have a subcomponent within the BA extract a domain-specific 
representation of the relevant information for the tutor. The linguistic interpretation takes 
place within the Gemini unification-based natural language understanding system [11] 
licensed from SRI International. 
 Gemini uses a grammar written for this particular application. In designing the 
grammar, we aimed to follow linguistic principles that would allow the grammar to scale up 
as the application grows and to permit reuse of parts of the grammar in other applications. 
Thus, in expansions within this domain or in developing a new domain, we would expect to 
be able to reuse similar LF designs for packaging information. Also, we would expect to be 
able to reuse syntactic rules for basic constructions, such as transitive and intransitive verb 
phrases, or question formation, along with the corresponding semantic rules indicating how 
the meaning of each phrase is constructed compositionally. Another area of reuse would be 
sets of lexical items, such as the various ways of saying 'yes' or 'no', or the verbs of asking 
for and reporting information. The domain-specific parts of the grammar include many 
lexical items. Other domain-specific components are the semantic categories of nouns (e.g. 
"fire_containment", "valve", "loop_object") which enable verbs to encode selectional 
restrictions. Also, some syntactic and semantic rules are domain-specific (e.g. those 
indicating the construction of compartment names or of fire boundaries). 
 



 
3.2 Speech Recognition 
 
One key feature of Gemini for dialogue systems is that Gemini grammars can be 
automatically compiled to Nuance language models [12]. This feature tightly couples 
development of the speech recognition and natural language understanding, producing a 
language model in which every recognized string will have an interpretation. In support of 
the different states within a dialogue system, Gemini provides the ability to divide a 
grammar into distinct subset grammars. This division has the greatest use in providing more 
specialized grammars for context-dependent speech recognition, but it can also be used for 
more specialized natural language understanding, to aid in cases where this specialization 
can eliminate ambiguity. 
 The process of compiling Nuance language models from Gemini grammars has in 
practice run into issues of scale, if grammars become highly structurally complex, 
especially if they are ambiguous. However, large vocabulary sizes in and of themselves 
have not presented substantial barriers to scaling up. Problems in the compiling process can 
fail at the point of compiling the Gemini grammar into the Nuance language model, doing a 
Nuance compile, or in recognition performance. To date, this issue of scale has always been 
addressable by attention to grammar engineering, without necessitating a compromise in 
system design, although it signals a possible greater problem area with greater scale. 
 The potential problems with scale may be addressed by incorporating other kinds of 
language models. An alternate approach is to design a small, precise grammar-based 
system, which gains robustness within the larger space of possible user utterances by 
attempting to guide users toward in-grammar utterances, by recognizing and understanding 
enough of the out-of-grammar utterances to suggest suitable in-grammar replacements [13]. 
 
 
3.3 Natural Language Generation and Speech Synthesis 
 
Currently, we use templates for generation. Templates do not offer particular advantages for 
scaling up or reusing systems, but they allow quick development and natural-sounding 
wording. As a more systematic and principled—thus more reusable—approach, we may 
consider using the capability of the Gemini natural language system for generation from the 
same grammar as the understanding grammar in the future. 
 For speech synthesis, we use Festival [14] with a customized limited domain voice, built 
with the Festvox [15] tools. The limited domain voice gives higher quality speech for the 
application, due to recording of prompts for the system with the appropriate intonation, 
instead of relying on the synthesizer to produce appropriate intonation in a general fashion. 
However, recording the desired system prompts and preparing the analyzed recordings as 
input for the Festvox scripts takes a fair amount of time, and as the domain grows in scale, the 
synthesizer becomes less likely to choose appropriate intonation for novel utterances by 
selecting appropriate units from the recorded prompts. For a new domain, very little can be 
carried over from the previous domain, unless there is an overlap of specific system phrases 
within the set of prompts to be recorded. 
 
 
4. Knowledge 
 
To understand how domain-specific information may be needed to solve a problem, we 
have broken it into two major categories: procedural and motivational. Procedural 



knowledge is the specific knowledge that given the context of a problem, there is some 
action the student should take which will move the problem closer to being solved. For 
example, in the damage control domain, if a Class C fire is known to exist, you should 
order a repair team to apply water to it. The predicates (fire) and resulting action (applying 
water) are obvious, but we are missing the motivational knowledge which tells you why 
applying water is appropriate (i.e., that applying water to a Class C fire will saturate the fuel 
source and make combustion considerably more difficult). 
 Using both kinds of knowledge, the tutor can attempt to form the best picture of a 
student’s ability within a domain. An automated problem-solver would require only 
procedural knowledge. Similarly, outside observation of a student solving a problem 
reflects only procedural knowledge. However, through questioning in interactive dialogue, a 
tutor can elicit motivational knowledge as well. Therefore, in order to more completely 
tutor a domain, both kinds of knowledge should exist in the KR and the tutor should have a 
mechanism for obtaining both from the student (i.e. observing the student solve a problem 
and being able to ask questions). 
 Currently SCoT-DC only has procedural knowledge, and as with most intelligent 
tutoring systems, it is represented as a sequence of rules which define how to react given a 
new input (e.g. a new fire, running out of water for fire-fighting) [16]. This is the necessary 
knowledge for solving a problem. The rules are represented as a sequence of clauses, the 
predicates, and if those are satisfied then a second sequence of clauses, which define 
modifications to the problem or problem-state, are activated. Observe the example below, 
which specifies given a new input of a “ fire-report” , when you should order firefighting—in 
plain English “ if the goals to isolate a compartment and actively desmoke the compartment 
are satisfied, and you haven’ t addressed the goal to apply a fire suppressant, than using the 
best repair locker for the compartment, you should fight the fire.”  
 
 RULE 6801.fire-report.suggest 
 IF   goal(find, satisfied, 7116,"Isolate Compartment", [compartment = Compartment]) 
    goal(find, satisfied, 7117, "Active Desmoke", [compartment = Compartment]) 
    goal(find, unaddressed, 7118, "Apply Fire Suppressant", [compartment = Compartment]) 
    world-state(find, _, 4302, "Best Repair Locker for Compartment", [compartment = Compartment, station = RL]) 
 THEN action(create, pending, 5120, "Fight fire in space", [compartment = Compartment, target = RL]) 
 
The problem state is represented in terms of three components: problems to be solved, goals 
which pertain to the solution of the problem, and then finally the specific state of the 
problem. Given a state, or update to the state, there will be some rule defining the relevant 
actions to take (such as the rule above). Given the new state, or update as a result of those 
actions, there will be more rules defining what to do. Proceeding in this fashion, the 
problem will eventually be deemed unsolvable (when there are no more possible actions to 
take), or it will have reached a solution-state.  
 There are a number of advantages to representing the procedural knowledge in this way. 
One is that it never needs to be recompiled because it is a static, declarative representation. 
Any domain which can be defined in terms of problems, related goals, and concrete state 
variables (actions and events) can be represented in it, at least to the point of knowing how 
to solve problems. Also, given that it is a functional KR, and should be able to offer 
solutions, one can test its strength (or 'ability-level') simply by posing problems and seeing 
if the KR can solve them. By doing this, errors in the knowledge should become apparent. 
They will be easy to debug since for every action taken towards solving the problem only 
one rule will be fired. We also may have a means for generating justifications of knowledge 
and actions directly from the KR, written in syntax that is only a small extension of the KR 
syntax itself [16]; this is still being developed. 



 By replacing the knowledge from one domain with another, the tutor will not need to be 
changed. This is not to say that there will not be a good deal of work to use new domain-
specific language, but use of the knowledge is the same regardless of the domain. The 
tactics and strategies communicate with the knowledge abstractly, at the level of problems, 
goals, states, and student actions. By thinking about a domain at this level, the tutor does 
not need to know what domain it is tutoring, but only needs to know how to appropriately 
deal with these objects, as described in Section 1. 
 
 
Conclusion 
 
In sum, we have presented the components of a scalable, reusable tutorial dialogue system. A 
tutoring model whose strategies and tactics are not restricted to any domain; a general model 
of conversational intelligence for dialogue management; techniques for natural language 
understanding; and a framework for knowledge representation. All of these attempt to 
minimize the efforts needed to reuse the tutor for a new domain. In the future we hope to 
advance the language generation capabilities, extend the model of conversational intelligence, 
create a robust way of representing motivational knowledge, and use the SCoT architecture as 
an experimental platform for evaluating different tutoring styles. 
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