

A Scalable, Reusable Spoken Conversational

Tutor: SCoT1

Karl SCHULTZ, Elizabeth Owen BRATT, Brady CLARK, Stanley PETERS, Heather PON-
BARRY, Pucktada TREERATPITUK

Center for the Study of Language and Information—Stanford University
220 Panama St., Stanford, CA 94305

Abstract. Scalability and reusability of tutorial dialogue systems is a function of the
corresponding characteristics in their component tutoring and dialogue technologies.
This paper discusses an architecture for a scalable, reusable spoken conversational
tutor, SCoT. With this design we hope to minimize the efforts needed to reuse the
components for implementing a tutor in any domain, large or small.

Introduction

This paper discusses an architecture for a scalable, reusable spoken conversational tutor
(SCoT), and one specific instantiation of it—SCoT-DC, which engages students in a spoken
discussion of their solutions to problems of controlling damage aboard a ship. Although the
subject matter knowledge that a tutoring system utilizes can usually not be employed in
teaching a different subject, many tutorial techniques are largely reusable across subject
domains. From the beginning of the system's design, an important goal was to achieve
significant independence from subject matter and from tutoring-specific aspects of spoken
dialogue. We describe here the approaches taken to achieve this goal, and assess the ways and
the extent to which the effort has succeeded.
 Broadly speaking, our approach has been to abstract out tasks such as detecting whether a
tutor's interlocutor possesses a given piece of knowledge, is ignorant of it, or holds a distorted
form of that knowledge. We also abstract methods a tutor could employ for addressing gaps or
confusions in knowledge, and for reinforcing a student's acquisition of correct knowledge.
Likewise we abstract strategies for deploying these tools in a tutoring session, and tactics for
reacting to a student's immediate needs during a session. Dialogue systems also utilize
linguistic and communicative knowledge, which may be symbolically represented in a fashion
that is relatively independent of any particular use and domain. These abstractions and their
uses in tutoring are formally modelled as a joint activity [1] engaged in by tutor and student.
 The rest of this paper is organized as follows. Section 1 describes in greater detail how
the tutor is designed and how it makes use of subject matter knowledge and of spoken
communication with a student. Section 2 describes a general purpose dialogue manager which
handles multi-modal, mixed initiative dialogue. Section 3 describes how we facilitate natural
language understanding and generation, both the techniques and technology used. Finally, we
describe in Section 4 our framework for knowledge representation.

1 This work is supported by the Department of the Navy under research grant N000140010660, a multi-disciplinary university research
initiative on natural language interaction with intelligent tutoring systems. To see a demo or get more information please go to
http://www-csli.stanford.edu/semlab/muri/.

1. Tutor

1.1 Overview

In this section, we describe the components of our tutoring model that enable SCoT to
develop global plans for reflective tutorial dialogue and respond dynamically to student
spoken input. Crucially, the tutorial expertise modelled by each of these components is
independent of domain knowledge (Section 4) or conversational intelligence (Section 2). For
this reason, we suspect that the tutoring model will be reusable in other tutorial domains; e.g.,
mathematics. We begin by laying out some assumptions that have guided our work to date,
and then turn to the details about our tutoring model.
 In general, spoken language tutorial dialogue systems must be able to plan sequences of
atomic actions (questions, answers, feedback), based on higher-level input. Inputs can include
a problem, the student's solution, domain knowledge, an analysis of the student's spoken input
(questions, answers, etc.), or a student model. On the basis of this input, the tutor carries out
planning. For example, the tutor may need to develop an initial overall tutoring plan or a plan
for responding to a student's incorrect answer.
 SCoT's tutoring model covers domains (like damage control) that are non-deterministic
(e.g., actions have unexpected outcomes) and have a dynamic problem state (e.g., a problem
increases in complexity over time) [2], as well as domains (like mathematics) that are
deterministic and static. The tutoring model can be divided into two components: strategies
and tactics. We will briefly discuss both of these components and how they are realized in one
particular deployment of this model, SCoT-DC.

1.2 Tutorial Strategies

The first component of SCoT's tutorial intelligence is strategies. Tutorial strategies are
methods for constructing an initial plan for post-practice reflective dialogue. SCoT uses
information in an annotated record of the student's performance in a problem-solving
session (e.g., a series of physics problems, a session with a damage control simulator) to
construct an initial overall tutoring plan; i.e., what problems are going to be discussed. Note
that the initial overall tutoring plan can be dynamically revised during the tutorial dialogue
(e.g. the student can request that the tutor skip discussion of a particular topic).
 In our current implementation, SCoT-DC, the tutor uses information from a record of
the student's performance in a session with the damage control simulator DC-Train [3] to
create an initial tutorial plan; i.e., what problems (e.g., shipboard crises such as fires) to
review. Work by Katz et al. [4-5] has shown that reflective tutoring has a positive effect on
learning and enhances the acquisition of strategic and conceptual knowledge. For these
reasons, SCoT is reflective (the tutor generates plans for post-practice reflection).
 SCoT-DC makes a list of exemplar problems that occurred in the student's session with
DC-Train. If more than one problem of a given type occurred, the tutor picks the one with
the most errors. The motivation for this particular algorithm is that the student's knowledge
and misconceptions will be reflected in the errors they make and that exemplar problems
will make for the most interesting dialogues and create the most opportunities for learning.
 This initial overall tutorial plan is represented as a tree, and it has three main branches
corresponding to an initial summary, topics for discussion, and a final summary. In the
initial summary, the tutor informs the student of how many problems arose, how many were
resolved, and gives a brief appraisal of the student's performance. For each exemplar
problem, the tutor introduces it, gestures to the student (e.g. highlighting a location on the

ship), and with the student jointly reconstructs the observed (what the student did) and ideal
(what an expert would do) methods of handling the problem by applying its tutorial tactics.
In the final summary, the tutor comments on the student's strengths and weaknesses, then
reiterates the most important lessons from the tutorial dialogue.

1.3 Tutorial Tactics

The second component of SCoT's tutorial intelligence is a repertoire of tutoring tactics (e.g.,
hinting). Student input, typically in response to a question, will initiate a tutoring tactic. The
tutor searches the library of tutoring tactics to find all of the tactics whose preconditions are
satisfied in the current context. Like the plan operators in other systems [6], each tutorial
tactic has a goal, a set of preconditions and a multi-step recipe [7]. Preconditions are
currently based on two parameters: the classification of the student's answer in the tutorial
dialogue and the classification of the student's action in the problem-solving session.
Recipes are composed of a sequence of actions. Actions in a recipe specify the tutor's
responses and make updates to the Activity Tree (Section 2.2). They can be primitive
actions like providing feedback or complex actions like an embedded tutoring tactic.
 SCoT's tactics are not specific to any one domain. Rather, dialogue with SCoT roughly
matches the 5-step dialogue frame that Graesser and Person [8] observed in human-to-
human tutoring, given directly below. Step 4 consists of familiar remediation techniques
like hinting and further prompts to illicit the correct answer.

 Step 1: Tutor asks question (or presents problem)
 Step 2: Learner answers question (or begins to solve problem)
 Step 3: Tutor gives short immediate feedback on the quality of the answer
 Step 4: The tutor and learner collaboratively improve the quality of the answer
 Step 5: The tutor assesses the learner’s understanding of the answer

The following tactic from SCoT is for responding to a partially correct answer:

Goal: Discuss Partially Correct Answer/Error of Omissions
Preconditions Recipe
 Student Answer = Partially Correct Acknowledge: Muted Praise
 Student Action = Error of Omission Hint: Partially Correct Hinting Sequence
 Appraise: Assert Suboptimal Solution Sequence

 The following example dialogue illustrates how SCoT-DC uses this tactic in tutorial
interactions. In turn (D) the student gives a partially correct answer ("Send repair two to
desmoke the compartment")—which is the same as the student’s partially correct action
from their session with DC-Train, as referenced in (L). In turn (E) the tutor gives an
acknowledgement ("Almost"). Turns (F-I) correspond to a hinting sequence for partially
correct answers. In turns (J-L), the tutor explains to the student why the solution offered in
(D) was not completely right.

 A. Tutor: All right, suppose the fire has been overhauled.
 B. Tutor: Let's now discuss the resulting smoke. [displays grey color in compartment]
 C. Tutor: What should you do first?
 D. Student: Send repair two to desmoke the compartment.
 E. Tutor: Almost.
 F. Tutor: You should send a different repair team.
 G. Tutor: Which team should you send instead?
 H. Student: Repair five.
 I. Tutor: Yes, exactly.

 J. Tutor: You should order repair five to desmoke the compartment.
 K. Tutor: Repair 2 was overtasked, so repair 5 should have been sent.
 L. Tutor: But you sent the wrong repair team during the session.

 The tutor’s actions are communicated to the Dialogue Manager (Section 2.1) via the
Activity Tree (Section 2.2) in a domain independent way, as described below. This better
facilitates not just being able to swap domains with greater ease, but also allows the tutor
and Dialogue Manager to be as generic as possible.

2. Dialogue Manager

Our Dialogue Manager (DM) is developed in the Architecture for Conversational Intelligence
framework [9]. This architecture was originally used in the WITAS system, a user-driven,
mixed-initiative dialogue system for controlling a robotic helicopter [10]. The generality of
the framework in terms of handling dialogue moves in structured discourse has enabled us to
adopt it for our system-driven, mixed initiative tutoring dialogue system.

2.1 Conversational Intelligence

The DM is a domain independent component that handles the Conversational Intelligence
of the system. It sits between the users and the domain specific Behavioral Agent (BA)—in
this case the tutor—managing communication. The DM is responsible for interpreting any
user input as a dialogue move or moves. It then determines the effects on the states of nodes
in the Activity Tree (Section 2.2). Also, the DM is responsible for turning a dialogue
activity request by a BA into the appropriate dialogue moves directed towards the user.
 By separating Conversational Intelligence from Behavioral Intelligence, we focus on
developing the BA at the activity level. This allows the Conversational Intelligence to be
independent of any domain specific features as well as being independent from the purpose
of the conversation. Therefore it is reusable for any dialogue, including discourse other than
tutoring or robotic control. Not only does this mean that adapting the framework for a new
domain would require less time and resources, but also any future features that would be
added for one domain could carry out to other domains as well. The current DM supports
Conversational Intelligence such as turn management, gesture input/output management,
handling of syntactically or contextually un-interpretable user input, automatic insertion of
discourse markers, appropriate pausing between utterances, and utterance aggregation.
 In SCoT, the DM mainly handles the input/output flow while its subcomponents are
responsible for specific features of dialogue. For instance the TurnManager implements
turn-taking algorithms and the SystemAgenda handles utterance priority and utterance
aggregation. By encapsulating these features into subcomponents, to replace any features
with domain specific versions can be done easily without changing the DM core. This is
most relevant for a subcomponent of the DM which needs to be domain specific—the
subcomponent which helps the DM match user utterances to the appropriate dialogue
context. This is very important for natural language understanding (Section 3.1).

2.2 Activity Tree

The Activity Tree is the communication interface between the core DM and the domain-
specific BA. It provides a way to structurally represent the joint activities of the students

and the BA. Each node in the tree corresponds to an activity. An activity is categorized into
two types: complex activity and atomic activity. An atomic activity corresponds to a single
action supported by the system such as a question/answer pair, an explanation, a hint, or
GUI manipulations (gestures to the user). A complex activity, on the other hand, could
contain other sub activities both of complex and atomic type. The communication is done
by basic Activity Tree manipulation which is one of the following: 1) changing the state of
some activities, 2) adding new activities, 3) deleting some activities, or 4) reordering
activities. These manipulations are generic and independent of any single domain.
 Each activity node is in one of the following defined states: planned, current, done, or
cancelled. Each node also has activity properties which contain domain dependent
information. This domain specific information is used mainly by the BA, but also for some
context matching in the DM. Additionally, both the DM and the BA can add a node to the
Activity Tree, to propose a new joint activity. The Activity Tree also provides the ability for
both parties to navigate the conversation tree, such as reviewing old activities, or skipping
certain activities.
 In general, the Conversational Intelligence of the DM only needs to understand the
activity at an abstract level, e.g. the state of the activity, in order to perform the appropriate
dialogue move, such as moving on to the next topic of the conversation. This means that the
BA, regardless of the domain, only needs to provide high level information about its
activity model, in order to take the advantage of the Conversational Intelligence provided by
the DM. The BA might also need to provide certain high level domain dependent context
for the activity in order for the DM to carry out appropriate dialogue moves, but this domain
specific information need not be complex and would only be used by a specialized DM
subcomponent, with no effect on DM behavior for other domains.

3. Natural Language

3.1 Natural Language Understanding

Our approach to natural language input to our system is to interpret each utterance fully as a
logical form (LF), then to have a subcomponent within the BA extract a domain-specific
representation of the relevant information for the tutor. The linguistic interpretation takes
place within the Gemini unification-based natural language understanding system [11]
licensed from SRI International.
 Gemini uses a grammar written for this particular application. In designing the
grammar, we aimed to follow linguistic principles that would allow the grammar to scale up
as the application grows and to permit reuse of parts of the grammar in other applications.
Thus, in expansions within this domain or in developing a new domain, we would expect to
be able to reuse similar LF designs for packaging information. Also, we would expect to be
able to reuse syntactic rules for basic constructions, such as transitive and intransitive verb
phrases, or question formation, along with the corresponding semantic rules indicating how
the meaning of each phrase is constructed compositionally. Another area of reuse would be
sets of lexical items, such as the various ways of saying 'yes' or 'no', or the verbs of asking
for and reporting information. The domain-specific parts of the grammar include many
lexical items. Other domain-specific components are the semantic categories of nouns (e.g.
"fire_containment", "valve", "loop_object") which enable verbs to encode selectional
restrictions. Also, some syntactic and semantic rules are domain-specific (e.g. those
indicating the construction of compartment names or of fire boundaries).

3.2 Speech Recognition

One key feature of Gemini for dialogue systems is that Gemini grammars can be
automatically compiled to Nuance language models [12]. This feature tightly couples
development of the speech recognition and natural language understanding, producing a
language model in which every recognized string will have an interpretation. In support of
the different states within a dialogue system, Gemini provides the ability to divide a
grammar into distinct subset grammars. This division has the greatest use in providing more
specialized grammars for context-dependent speech recognition, but it can also be used for
more specialized natural language understanding, to aid in cases where this specialization
can eliminate ambiguity.
 The process of compiling Nuance language models from Gemini grammars has in
practice run into issues of scale, if grammars become highly structurally complex,
especially if they are ambiguous. However, large vocabulary sizes in and of themselves
have not presented substantial barriers to scaling up. Problems in the compiling process can
fail at the point of compiling the Gemini grammar into the Nuance language model, doing a
Nuance compile, or in recognition performance. To date, this issue of scale has always been
addressable by attention to grammar engineering, without necessitating a compromise in
system design, although it signals a possible greater problem area with greater scale.
 The potential problems with scale may be addressed by incorporating other kinds of
language models. An alternate approach is to design a small, precise grammar-based
system, which gains robustness within the larger space of possible user utterances by
attempting to guide users toward in-grammar utterances, by recognizing and understanding
enough of the out-of-grammar utterances to suggest suitable in-grammar replacements [13].

3.3 Natural Language Generation and Speech Synthesis

Currently, we use templates for generation. Templates do not offer particular advantages for
scaling up or reusing systems, but they allow quick development and natural-sounding
wording. As a more systematic and principled—thus more reusable—approach, we may
consider using the capability of the Gemini natural language system for generation from the
same grammar as the understanding grammar in the future.
 For speech synthesis, we use Festival [14] with a customized limited domain voice, built
with the Festvox [15] tools. The limited domain voice gives higher quality speech for the
application, due to recording of prompts for the system with the appropriate intonation,
instead of relying on the synthesizer to produce appropriate intonation in a general fashion.
However, recording the desired system prompts and preparing the analyzed recordings as
input for the Festvox scripts takes a fair amount of time, and as the domain grows in scale, the
synthesizer becomes less likely to choose appropriate intonation for novel utterances by
selecting appropriate units from the recorded prompts. For a new domain, very little can be
carried over from the previous domain, unless there is an overlap of specific system phrases
within the set of prompts to be recorded.

4. Knowledge

To understand how domain-specific information may be needed to solve a problem, we
have broken it into two major categories: procedural and motivational. Procedural

knowledge is the specific knowledge that given the context of a problem, there is some
action the student should take which will move the problem closer to being solved. For
example, in the damage control domain, if a Class C fire is known to exist, you should
order a repair team to apply water to it. The predicates (fire) and resulting action (applying
water) are obvious, but we are missing the motivational knowledge which tells you why
applying water is appropriate (i.e., that applying water to a Class C fire will saturate the fuel
source and make combustion considerably more difficult).
 Using both kinds of knowledge, the tutor can attempt to form the best picture of a
student’s ability within a domain. An automated problem-solver would require only
procedural knowledge. Similarly, outside observation of a student solving a problem
reflects only procedural knowledge. However, through questioning in interactive dialogue, a
tutor can elicit motivational knowledge as well. Therefore, in order to more completely
tutor a domain, both kinds of knowledge should exist in the KR and the tutor should have a
mechanism for obtaining both from the student (i.e. observing the student solve a problem
and being able to ask questions).
 Currently SCoT-DC only has procedural knowledge, and as with most intelligent
tutoring systems, it is represented as a sequence of rules which define how to react given a
new input (e.g. a new fire, running out of water for fire-fighting) [16]. This is the necessary
knowledge for solving a problem. The rules are represented as a sequence of clauses, the
predicates, and if those are satisfied then a second sequence of clauses, which define
modifications to the problem or problem-state, are activated. Observe the example below,
which specifies given a new input of a “ fire-report” , when you should order firefighting—in
plain English “ if the goals to isolate a compartment and actively desmoke the compartment
are satisfied, and you haven’ t addressed the goal to apply a fire suppressant, than using the
best repair locker for the compartment, you should fight the fire.”

 RULE 6801.fire-report.suggest
 IF goal(find, satisfied, 7116,"Isolate Compartment", [compartment = Compartment])
 goal(find, satisfied, 7117, "Active Desmoke", [compartment = Compartment])
 goal(find, unaddressed, 7118, "Apply Fire Suppressant", [compartment = Compartment])
 world-state(find, _, 4302, "Best Repair Locker for Compartment", [compartment = Compartment, station = RL])
 THEN action(create, pending, 5120, "Fight fire in space", [compartment = Compartment, target = RL])

The problem state is represented in terms of three components: problems to be solved, goals
which pertain to the solution of the problem, and then finally the specific state of the
problem. Given a state, or update to the state, there will be some rule defining the relevant
actions to take (such as the rule above). Given the new state, or update as a result of those
actions, there will be more rules defining what to do. Proceeding in this fashion, the
problem will eventually be deemed unsolvable (when there are no more possible actions to
take), or it will have reached a solution-state.
 There are a number of advantages to representing the procedural knowledge in this way.
One is that it never needs to be recompiled because it is a static, declarative representation.
Any domain which can be defined in terms of problems, related goals, and concrete state
variables (actions and events) can be represented in it, at least to the point of knowing how
to solve problems. Also, given that it is a functional KR, and should be able to offer
solutions, one can test its strength (or 'ability-level') simply by posing problems and seeing
if the KR can solve them. By doing this, errors in the knowledge should become apparent.
They will be easy to debug since for every action taken towards solving the problem only
one rule will be fired. We also may have a means for generating justifications of knowledge
and actions directly from the KR, written in syntax that is only a small extension of the KR
syntax itself [16]; this is still being developed.

 By replacing the knowledge from one domain with another, the tutor will not need to be
changed. This is not to say that there will not be a good deal of work to use new domain-
specific language, but use of the knowledge is the same regardless of the domain. The
tactics and strategies communicate with the knowledge abstractly, at the level of problems,
goals, states, and student actions. By thinking about a domain at this level, the tutor does
not need to know what domain it is tutoring, but only needs to know how to appropriately
deal with these objects, as described in Section 1.

Conclusion

In sum, we have presented the components of a scalable, reusable tutorial dialogue system. A
tutoring model whose strategies and tactics are not restricted to any domain; a general model
of conversational intelligence for dialogue management; techniques for natural language
understanding; and a framework for knowledge representation. All of these attempt to
minimize the efforts needed to reuse the tutor for a new domain. In the future we hope to
advance the language generation capabilities, extend the model of conversational intelligence,
create a robust way of representing motivational knowledge, and use the SCoT architecture as
an experimental platform for evaluating different tutoring styles.

References

[1] Clark, H. H. (1996). Using Language. Cambridge: University Press.
[2] Thomsen-Gray, Zack, Karl Schultz, Brady Clark, Elizabeth Owen Bratt, and Stanley Peters. (2003).

Intelligent Tutoring for Non-Deterministic and Dynamic Domains. In Proceedings of AI-ED 2003.
[3] Bulitko, V., and David C. Wilkins. (1999). Automated instructor assistant for ship damage control. In

Proceedings of AAAI-99.
[4] Katz, S., G. O’Donnell, and H. Kay. (2000). An Approach to Analyzing the Role and Structure of

Reflective Dialogue. International Journal of Artificial Intelligence in Education, 11, 320-343.
[5] Katz, S. and D. Allbritton. (2002). Going Beyond the Problem Given: How Human Tutors Use Post

Practice Discussions to Support Transfer. In S. A. Cerri, G. Gouardères, and F. Paraguaçu (Eds.),
Proceedings of 6th International Conference, ITS 2002 (pp. 641-650). Berlin: Springer.

[6] Freedman, R. (2000). Plan-Based Dialogue Management in a Physics Tutor. In Proceedings of the Sixth
Applied Natural Language Processing Conference (ANLP 2000).

[7] Wilkins, D. (1988). Practical Planning: Extending the Classical AI Planning Paradigm. San Mateo, CA:
Morgan Kaufmann.

[8] Graesser, A. and N. K. Person. (1994). Question asking during tutoring. American Educational Research
Journal, 31, 104-137.

[9] Lemon, Oliver, Alexander Gruenstein and Stanley Peters. (2002). Collaborative Activities and Multi-
tasking in Dialogue Systems. Traitement Automatique des Langues (TAL), 43(2):131-154.

[10] Lemon, Oliver, Anne Bracy, Alexander Gruenstein, and Stanley Peters. (2001). The WITAS Multi-Modal
Dialogue System I, In Proceedings of EuroSpeech 2001.

[11] Dowding, J., M. Gawron, D. Appelt, L. Cherny, R. Moore, and D. Moran. (1993). Gemini: A Natural
Language System for Spoken Language Understanding. In Proceedings of ACL 1993.

[12] Moore, Robert C. (1998). Using Natural Language Knowledge Sources in Speech Recognition. In
Proceedings of NATO ASI 1998.

[13] Hockey, Beth Ann, John Dowding, Gregory Aist, and Jim Hieronymus. (2002). Targeted Help and Dialogue
about Plans. In Proceedings of ACL 2002.

[14] Black, A., and P. Taylor. (1997). Festival Speech Synthesis Systems: system documentation (1.1.1).
Technical Report HCRC/RT-83, University of Edinburgh Human Communication Research Centre, 1997.

[15] Black, A., and K. Lenzo. (1999). Building Voices in the Festival Speech Synthesis System (DRAFT)
documentation and scripts, http://www.cstr.ed.ac.uk/projects/festival/papers.html.

[16] Fried, D. and David C. Wilkins. (2003). A FOL Knowledge Representation that Supports Expert,
Critiquing, and Tutoring Models: DCX 3.0, Knowledge Systems Lab Report UIUC-BI-KBS-2003-0001,
Beckman Institute, University of Illinois.

