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Abstract
Spoken dialogue interfaces, mostly command-and-control, 
become more visible in applications where attention needs to be 
shared with other tasks, such as driving a car. The deployment 
of the simple dialog systems, instead of more sophisticated 
ones, is partly because the computing platforms used for such 
tasks have been less powerful and partly because certain issues 
from these cognitively challenging tasks have not been well 
addressed even in the most advanced dialog systems. This paper 
reports the progress of our research effort in developing a 
robust, wide-coverage, and cognitive load-sensitive spoken 
dialog interface called CHAT: Conversational Helper for 
Automotive Tasks. Our research in the past few years has led to 
promising results, including high task completion rate, dialog 
efficiency, and improved user experience.  
Index Terms: dialog systems, cognitive load, robustness 

1. Introduction
Most current applications of spoken language dialogue systems 
involve narrowly focused language understanding and simple 
models of dialogue interaction. Real human dialogue, however, 
is highly context- and situation- dependent, interactive and 
collaborative with ill-formed utterances or fragments. Skilled 
communicators are also very conscious about what, when, and 
how to speak.  

Understanding language and modeling natural dialogue of 
this form is important in building friendly spoken-language 
interfaces, but it is particularly critical in settings where the user 
is focused on external tasks, such as flying a helicopter or 
driving a car. In such scenarios, users cannot plan their 
utterances ahead of time: they need to be able to access 
background information spontaneously, issue instructions that 
build on the context, and the system must be able to interpret 
the requests and respond to the users properly.  

This paper describes major progress made over the past few 
years in building such a spoken dialogue system for a variety of 
applications [12]. Various features have been refined or added 
to the implemented CHAT system, which include: 
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Robustness in the face of imperfect input from human 
users and Speech Recognition (SR). It addresses issues in 
utterance end-pointing, speech disfluencies, incomplete 
references to proper names, and phrase fragments.
Deep language analysis: the system understands not just 
the keywords, but subtleties in non-content words, such as 
“a”, “the”, and “other”. 
Situation- and context-dependent interpretation of user 
utterances: the system selects the best interpretation from 
multiple sources and decides a right move for an intended 
device based on a global optimization. 
Collaborativeness: the user negotiates with the system and 
finds the best available solution. 
Regulated responses. Information is presented in a load-
sensitive way so not to overwhelm the user. 
Dynamic updates: information content may be added or 
extended dynamically. 

Two applications have been evaluated with high task 
pletion rates: one is music, where the user may query song 

abases and operate an MP3 player; the other is restaurant 
ection (RS), where the user may select an intended restaurant 
 negotiation. 
The paper is organized as follows. Section 2 describes the 

erall system architecture. Sections 3, 4, 5, and 6 describe its 
e modules and their functionalities: the Natural Language 
derstanding (NLU) module, the dialogue manager (DM) 
dule, the Content Optimization (CO) and Knowledge 
nagement (KM) modules, and the Natural Language 
neration (NLG) module. Section 7 gives a brief description 
data collection setup as well as evaluation results. Finally, we 
clude with a comparison with other work. 

2. The dialogue system overview 
e CHAT system has kept the same architecture as the one 
orted in [12], which uses an event-based, message-oriented 
ddleware, a popular paradigm for distributed systems, and is 
ecially convenient for dynamic registration of new 
ponents. The major difference from the previous version is 
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the addition of the prosodic end-pointing module and CO 
module, and new features at each individual module.  

Among the modules in Figure 1, we use the Nuance 8.5 
speech recognition engine with class-based ngrams and dynamic 
grammars, and Nuance Vocalizer 3.0 as the TTS engine. The 
Prosody module provides context-sensitive end-pointing so that 
the recognizer does not cut off the utterance immediately when 
there is a hesitation. In the next few sections, five core 
components, including the NLU, DM, NLG, CO and KM 
modules will be detailed. 

Figure 1 System architecture. 

3. The NLU module 
The NLU module in our system has been extended to include 
edit region detection [13], partial proper name identification, 
and shallow semantic parsing in addition to the original deep 
structural analysis [12].  

One may argue for less sophisticated but robust methods 
such as using key phrase spotting for understanding so to avoid 
the trouble of detecting disfluencies or partial proper names 
(PPN). Our WOZ data shows a strong evidence of PPNs: about 
29% of times, people use partial names or their slight variants, 
instead of full proper names. However, it is difficult to use key 
phrases to cover variants of partial proper names when they are 
combined with other phrases. In addition, we intend to use all 
but the self-edited words for they give us various meanings at 
different levels. An example for a finer distinction is: Play a 
song by Cher means play any song performed by Cher; while 
Play the song by Cher means play a specific song in context.  

To provide a backoff solution in case of failed full analysis, 
we implemented a shallow semantic parser that produces a flat 
semantic representation similar to [4]. The representation 
includes dialog acts, actions, and domain-dependent slots (e.g., 
cuisine type in the RS domain). Some of the attributes are 
modeled with a maximum entropy approach [14], while others 
are based on pattern matching. The resulting scores are either 
the conditional probability or the percentage of overlapping 
between the best-matched candidate in the database and the 
actual word sequence in the utterance.  

N-best candidates from both deep structural analysis and 
shallow semantic analysis are used by the later stage DM, which 
decides the best interpretation together with other choices 
simultaneously based on the current context.  
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4. The DM module 
e Dialogue Manager (DM) performs pragmatic interpretation 
the NLU output (relating the user input to dialogue context 
 the underlying domain and activity representation) and 
ermines the resulting system activities (dialogue responses, 
n-verbal actions such as playing songs, or their 

binations). We use an information-state-update approach to 
logue management [5] with a rich tree-based representation 
dialogue context [6], which includes anaphoric referents and 
positional information as well as a structured dialogue move 
tory. Moves are interpreted in context by attachment to an 
ropriate open parent node (e.g. Answer moves attach to their 
ent Question nodes), with corresponding rules updating the 
text.
Importantly, this is linked to, but maintained separately 

m, the models of devices and activities; these manage the 
derlying activities, resolving domain referents, monitoring 
cution, and triggering reports or clarification sub-dialogues 
required. System actions are determined by the dialogue 
ve type and the underlying device model: queries or 
isions may cause new database queries to be formed and 
sed to the KM (see below); commands may cause concrete 
ice activities (e.g. playing a song on a MP3 device). The 

ults of these underlying activities then determine system 
ponses to the user: reports of progress or query results; 
gestions for refinement or clarification requests in the case 
ambiguity or resolution failure. In addition, we provide a 
arate scripting language to allow easy customization to new 

mains and devices: this allows the definition of a dialogue 
ve hierarchy, move attachment rules (including possible 
tem output behaviour), and mappings from utterance 
resentations to the moves themselves.  
Robustness is increased by allowing multiple possible 

erpretation methods for move types, and a principled method 
 choosing between them. Moves can be associated with 
ssibly underspecified) features of the deep structural output, 
 shallow semantic output, or their combination.  These 
ppings can be given confidence weights, so that e.g. deep 
se information can be preferred in principle, backing off to 
llow slot-value pairs if the former is not available, and then 
shallow dialogue act or action hypotheses alone. Required 
uments for the move (e.g. the NP referent of a MP3 
mand, or the constraints for a database query) can also be 

en from any of these sources, with similar preferences being 
ined. The overall preferred interpretation (and choice of 
logue move and device) can then be chosen by combining 
 weights of these mappings with the interpretation 
fidences provided by the NLU module, and pragmatic 
tors such as move attachment and domain plausibility 
mber of database constraints inferred, success of NP 
olution etc.). This effectively allows n-best list re-ordering – 
 do not consider hypotheses in order of NLU confidence 
ne but on their combined score.
In addition, the close interaction with the underlying 

ivity models [3] means that argument resolution can be 
ised if necessary: e.g. if a hypothesized constraint value from 
eep syntactic parse is preferred but turns out to be incorrect 
rhaps leading to null database query results), the DM can 
k off to hypotheses from the robust semantic classifier and 



try again, only being forced to ask the user for clarification if all 
(reasonably confident) hypotheses fail. 

5. The CO and KM modules 
The Knowledge Manager (KM) controls the access to 
knowledge base sources (such as, domain knowledge and device 
information) and their updates. Domain knowledge is structured 
according to domain-dependent ontologies, using Protégé, a 
domain-independent ontology tool.1 The KM also serves as the 
repository of device information, such as the device-specific 
activity model. As a new device is made available, it registers 
its information with the KM, which then makes it available to 
the DM.

During a conversation, the DM queries the KM via the CO 
to get instances matching semantic descriptions derived from 
utterance. For example, in the MP3 domain, a command to 
“play some rock music by Cher” results in a query for objects of 
class song with genre=rock and artist=Cher, where genre and 
rock are (inherited) properties of the class song.

The CO acts as a content regulator and recommender so that 
the dialog system will not overwhelm the user nor leave the user 
in limbo. When many results satisfy the constraints from user, 
the CO uses the ontology to categorize and output them in a 
succinct way to reduce the user’s cognitive load. At the same 
time, it may also propose a refinement strategy so that the user 
can know what to do next. When there is no result from a query, 
the CO would suggest to the user an alternative constraint based 
on ontological information and a set of configurable pre-defined 
strategies, such as relaxing the distance constraint when 
searching for a restaurant [9].  

Additional functionalities from the CO also include:  
Interact with the KM to resolve ambiguous names 
Merge with the previous frame if the current query is a 
revision instead of a new query 
Provide statistics based on ontological hierarchy. 

6. The NLG module 
The task of the Natural Language Generation (NLG) module is 
to verbalize the database query result given a dialogue strategy 
that has been determined by the dialogue move scripts. 
However, its role goes well beyond this: NLG is crucial in 
spoken dialogue systems to provide feedback to the user about 
what the system understood and what actions it performed as a 
consequence of its understanding. 

The core of the generator is a set of productions written in a 
production system. We follow the bottom-up generation 
approach for production systems described in [11] and perform 
mild overgeneration of candidate moves, followed by ranking. 
The highest-ranked candidate is selected for output.

Productions map individual database constraints to phrases 
such as “open for lunch”,  “within 3 miles” and “a formal dress 
code”, and recursively combine them into NPs. This includes 
the use of coordination to produce “restaurants with a 5-star 
rating and a formal dress code”, for example.  The NPs are 
integrated into sentence templates, several of which can be 
combined to form an output candidate turn. For example, a 

                                                                

1 http://protege.stanford.edu
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straint-realizing template “I found no [NP-original] but there 
 [NUM] [NP-optimized] in my database” (see below for 
ther explanation) can be combined with a follow-up sentence 
plate such as “You could try to look for [NP-constraint-
gestion]”.  
Ranking of candidate output moves is done by using a 
bination of factors. First, the ranker computes an alignment 

re for each candidate, based on its ngram-based overlap with 
 user utterance. For example, this allows us to prefer 
hinese restaurants” over “restaurants that serve Chinese food” 
the user used a wording more similar to the first.  Mild 
ergeneration combined with ranking based on alignment also 
ows us to map a constraint such as PriceLevel=0-10 to both 
eap” and “inexpensive”, and use alignment to play back the 

ginal word choice to the user.  
Second, ranking uses a variation score to cycle over 

tence-level paraphrases. In the extreme case of repeated 
ntical user inputs, the system simply chooses one paraphrase 
er the other, and starts over when all paraphrases have been 
d.
Third, we use an ngram filter based on bad examples 

rams, removing, for example, “Chinese cheap restaurants” 
t keeping “cheap Chinese restaurant.” For generalization, we 
lace constraint realizations with semantic tags derived from 
 constraint names (except for the head noun), for example the 
ram “CUISINE PRICE restaurants”. 

7. Data Collection and Evaluation
Z data collection was used to bootstrap the development of 

 CHAT system [2]. Two batches of experiments have been 
ducted for MP3 and RS: more than 50 subjects were 
ruited for performing MP3 or RS while driving in a driving 

e or a driving simulator. This process gives us insight how 
man subjects interact with an ideal dialog system, helps us in 
ecting research topics we need to address, and provides us 
a for improving the language coverage in both NLU and 
G modules.
The CHAT dialog system is intended for multi-domain 
lications with wide language coverage, but it is not a system 

 any general conversation. Careful attention was given to the 
elopment of the dialog tasks for the human subjects to 
form. Specifically, we try to avoid two undesirable cases:

Tasks are not constrained enough so that the collected 
speech becomes irrelevant, unusable, or very sparse. 
Tasks are written in such a way that the subjects tend to 
use the same language in the task description. 

To this end, tasks were written such that the goals of each 
k were transparent and explicit (to form the intended mental 
text); however, the language used for communicating these 

als to the participant was not explicitly stated (to avoid 
pying behavior”). We call this approach a task-constrained

d language-unconstrained approach. The following example 
RS domain illustrates the rational behind this approach:  

Task description: You and a friend would like to have a 
nice dinner in the ritzy town of Jackson.  You both are in 
the mood for some tasty lobster and crab, complemented 
with some vanilla-infused drawn butter.  Also, the waiters 
better be on their best behavior, because your friend is 
somewhat of a snob when it comes to pushing the help 
around.  Find a restaurant that meets your needs. 



In the RS domain, 12 criteria (e.g., cuisine type, price level, 
location) were used across 16 tasks. This is in contrast with the 
first batch WOZ data collection for the MP3 domain, where 
much more open-ended scenarios were given to the subjects.

After the system was developed and refined with the WOZ 
data, evaluation was conducted for both MP3 and RS 
applications. In the RS evaluation, 9 out of the 16 tasks were 
selected so that the subjects were able to finish them within one 
hour. In each task, three criteria are used to pick a restaurant. 
The nine tasks keep a good balance for the twelve criteria. In 
MP3 domain, however, we had to design a new set of eleven 
tasks based on the scenarios. In MP3 evaluation, the number of 
steps to complete different tasks varies significantly. Thus, two 
values of Dialog Efficiency were calculated for each subject: 
Dialog Efficiency Min and Max. Dialog Efficiency Min and 
Max are defined as the percentage of tasks completed within 
two turns of the min and max thresholds, respectively. The min 
threshold is the smallest number of turns ideally required to 
complete a task. The max threshold is defined to be the highest 
acceptable number of turns for a task, as determined beforehand 
based on expert experience with the tasks. 

In contrast with MP3 domain, all nine RS tasks require the 
same number of constraints to be met (i.e., three constraints). 
Therefore, we report the absolute number of turns used by the 
subjects. Twenty subjects were recruited independently for each 
domain.

In the evaluation of the MP3 domain with about 1000 
database items, we reached 98% task completion rate, 90% 
speech recognition accuracy, and 90% semantic accuracy. In 
addition, 71% is reached for the metric of dialog efficiency min, 
and 91% for dialog efficiency max. Using the user satisfaction 
rating system by CU-Communicator [7], we reached a score of 
2.24 which is slightly worse than 1.76, a number reached by 
their latest version, but better than 2.8, an average of their 9 
fielded systems. Score 2.24 indicates that users like the system, 
but not strongly. This could be the effect of the well-designed 
iPod HMI.

In the evaluation of the RS domain with 2500 restaurants, 
we reached a task completion rate of 94% with a word 
recognition rate of 85%, and a semantic accuracy of 89%. On 
average, the subjects needed 4.1 turns to complete a task. In the 
current task setup, speaking restaurant names were not 
encouraged due to poor recognition accuracy for many foreign 
names in the database. However, our user satisfaction 
questionnaire showed a mean rating of 2.04, which was not 
significantly different from the rating of 1.76 reported by [7].  

8. Conclusion
Previous research work on conversational dialogue systems has 
mostly focused on dealing with dialogs that users need to pay 
full attention to [1]. Their applications include travel planning, 
flight information, navigation, hotel reservation, and restaurant 
selection [7,8]. More sophisticated dialogue management 
research has recently focused on collaborative aspects of human 
machine dialogues [1,6,10].  

While extending the research on the collaborative aspects, 
our effort specifically focuses on dealing with the 
conversational phenomena under high stress, including 
spontaneous speech understanding, maintaining multiple 
threaded dialogs, robustly selecting best candidates based on 
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bal contextual criteria, and load-sensitive information 
sentation. We are interested in extending and evaluating the 
tem on more challenging domains. 
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